原题
设n阶行列式
求证:
解析
思路:
利用数学归纳法
首先验证n=1与n=2的情况是否成立,易证成立
现假设对 时结论成立,下证
的情形
记 ,按最后一列展开即得递推式
由归纳假设可知 满足结论,故只需将其代入上述递推式中进行化简即可证得
设n阶行列式
求证:
利用数学归纳法
首先验证n=1与n=2的情况是否成立,易证成立
现假设对 时结论成立,下证
的情形
记 ,按最后一列展开即得递推式
由归纳假设可知 满足结论,故只需将其代入上述递推式中进行化简即可证得