高代绿皮第四版课后习题复习题一T11

原题


设n阶行列式

|A|=\left| \begin{matrix} {​{a}_{0}}+{​{a}_{1}} & {​{a}_{1}} & 0 & 0 & \cdots & 0 & 0 \\ {​{a}_{1}} & {​{a}_{1}}+{​{a}_{2}} & {​{a}_{2}} & 0 & \cdots & 0 & 0 \\ 0 & {​{a}_{2}} & {​{a}_{2}}+{​{a}_{3}} & {​{a}_{3}} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & {} & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & {​{a}_{n-1}} & {​{a}_{n-1}}+{​{a}_{n}} \\ \end{matrix} \right|

求证:

|A|=a_{0}a_{1}\cdots a_{n}\,\left( \displaystyle\frac{1}{a_{0}}+\displaystyle \frac{1}{a_{1}}+\cdots+\displaystyle\frac{1}{a_{n}}\right)


解析


思路:

利用数学归纳法

首先验证n=1与n=2的情况是否成立,易证成立

现假设对 k<n 时结论成立,下证 k=n 的情形

记 |A|=A_{n} ,按最后一列展开即得递推式

A_{n}=(a_{n-1}+a_{n})A_{n-1}-a_{n-1}^{2}A_{n-2}

由归纳假设可知 A_{n-1}\,\,,A_{n-2} 满足结论,故只需将其代入上述递推式中进行化简即可证得

参考解题细节:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值