植被农业数据下载网站整理


  本文为 “GIS数据获取整理”专栏(https://blog.csdn.net/zhebushibiaoshifu/category_10857546.html)中第四篇 独立博客,因此本文全部标题均由“4”开头。本文对目前主要的农业、植被数据获取网站加以整理与介绍,若需其它GIS领域数据(如遥感影像数据、气象数据、土地土壤数据、行政区数据等),大家可以点击 上方专栏查看,也可以看 这一篇 汇总文章:https://blog.csdn.net/zhebushibiaoshifu/article/details/114401239。

4 植被农业数据

4.1 作物产量数据

4.1.1 SPAM

  • 网址:https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/PRFF8V
      SPAM(Spatial Production Allocation Model)是MapSPAM团队基于多种数据源生产的全球作物生产分配模型,其包括全球2010年41种作物的种植面积、收获面积、产量、作物加工产品产量、作物收获面积与产量总产值等数据。空间分辨率为8.6 km。

4.1.2 Aerial Intelligence

  • 网址:https://github.com/aerialintel/data-science-exercise
      Aerial Intelligence是一个致力于为世界农业带来最先进数据科学的初创企业,其在GitHub上发布了美国几个县的小麦产量,初衷那个是为了鼓励用户基于合适的数据分析方法实现作物产量预测。

4.2 作物物候数据

4.2.1 ChinaCropPhen1km

  • 网址:https://figshare.com/articles/dataset/ChinaCropPhen1km_A_high-resolution_crop_phenological_dataset_for_three_staple_crops_in_China_during_2000-2015_based_on_LAI_products/8313530/6
      ChinaCropPhen1km是由我国学者开发的全国2000年至2015年三种主要作物(水稻、小麦、玉米)物候数据集,每一个年份对应的每一种作物的每一个物候期分别是一张图像,像素值为该年份中该作物该种物候期对应的时间(儒略日)。其空间分辨率为1 km。

4.3 植被指数数据

4.3.1 Index-Data-Base

  • 网址:https://www.indexdatabase.de/
      Index-Data-Base(IDB)是一个植被指数数据资料库,而并非含有实际数据的数据库。其提供了一个索引,我们可以用以在特定的植被指数用途、指定特定的遥感平台情况下,对满足要求的植被指数加以索引。

4.3.2 MODIS Vegetation Index Products

  • 网址:https://modis.gsfc.nasa.gov/data/dataprod/mod13.php
      MODIS Vegetation Index Products是基于MODIS数据、由官方生产的16日植被指数数据产品,包括NDVI与EVI两种。其空间分辨率为250 m,500 m,1 km,0.05°。

4.3.3 LAI_TS_Val

  • 网址:https://zenodo.org/record/4393164#.X-V4HthLhPY
      LAI_TS_Val(LAI time-series validation)是一个全球2001年至2011年长时间序列LAI验证数据集产品,具有924个验证数据,空间分辨率为1 km。

4.3.4 CSIF

  • 网址:https://figshare.com/articles/dataset/CSIF/6387494
      CSIF是基于MCD43C4数据生产的全球叶绿素荧光参数数据集。

欢迎关注公众号:疯狂学习GIS
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

疯狂学习GIS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值