Landsat系列卫星遥感影像数据USGS中批量下载多张图像的方法

  本文介绍在USGS网站中,批量下载LandsatMODIS等遥感影像数据的方法。

  首先需要提及的是,由于EarthExplorer的官方网站改版,导致本文原本的方法暂时不可用了;因此,本文在202406月更新,介绍1种新的方法,且确认该方法可用。

  首先,打开EarthExplorer官网(https://earthexplorer.usgs.gov/),首先完成注册与登录。

  接下来,点击左侧“Search Criteria”,首先选择研究区域。研究区域的划定有多种方法,可以依据地理名称选定研究区域,也可以在右侧地图中手动划定研究区域,还可以上传自己的.kmz文件或Shapefile文件等等。例如,如果大家需要上传自己划定的Shapefile文件,就可以按照以下方法加以操作。

  其次,选择需要下载的遥感影像时间范围。

  如果有需要的话,还可以再选择对应的遥感影像云覆盖度阈值。

  点击“Data Sets”,选择需要下载的遥感影像类型。本文就以Landsat的下载方法为例来介绍,其他遥感影像产品也是类似的。对于Landsat,目前我们一般情况下选择Collection 2 Level-2级别的产品就好。

  选择完毕后,点击“Results”,进入一个搜索等待界面,稍等片刻即可。

  等待结束,可以看到结果。如果我们选择了多种卫星传感器对应的遥感影像,那么就需要在下图中的红色框内进行下拉勾选。由下图可以看到,Landsat 7对应的搜索结果共有1613张影像。

  首先批量将这1613Landsat 7遥感影像进行下载。

  点击下图中的红色框内部分。

  在弹出的窗口中配置任务名称与类型,其中名称大家依据需要自行设置,类型我们选择“CSV”。

  随后出现一个提示,点击“Close”即可。

  如果我们需要下载多个类型的数据,就点击上方的Data Set栏,切换到所需的其他数据;例如我这里可以切换到Landsat 8,重复上述操作。

  等待一定时间后,我们的账号注册关联邮箱将会收到一封邮件,告诉我们刚刚提交的订单生成了遥感影像名称文件。

  点击进入邮箱内部的链接,即可下载一个压缩包;解压缩后,里面就是一个.csv文件。

  打开.csv文件,将第1列除了第1行(表头)之外的信息全部复制。这里需要注意,我们如果需要Level 2的数据(建议用这个),那么就复制第1列;如果需要Level 1的数据(不推荐),则需要复制第2列。

  粘贴到一个.txt文件中,并做好文件重命名,文件名只要大家自己记得即可。

  随后,进入这里(https://earthexplorer.usgs.gov/settings?page=scenelist)。因为我们这里介绍的是Landsat数据的下载,所以就选择“Landsat Product ID List”一栏,如下图所示;随后,按照自己的需求设置File List Name名称,然后将上述.txt文件导入,并点击右上角的“Upload File”,如下图所示。

  随后,在打开的页面中,下滑到“Scene List”,并在如下图紫色框所示位置处左侧的箭头上单击,打开文件列表。

  然后选择右上角的“Options”,然后选择“File Selection”。

  我这里只需要下载地表反射率数据对应的波段,所以就选择第一个绿色的按钮,如下图所示;如果需要地表温度数据,就选择第二个绿色按钮;如果需要所有波段,那就选择最下面的第三个绿色按钮。

  随后,可以看到具体39个文件已经被添加了。

  接下来,回到刚刚的页面,点击右下角的提交任务按钮。

  稍等片刻,点击下方的开始下载按钮。

  在弹出的窗口中,选择加载下载工具按钮。

  找到我们刚刚导入的任务,点击其右侧的蓝色按钮。

  设置下载路径。

  如果浏览器弹出提示窗口,都选择确认即可。

  随后,即可点击右下角的开始下载按钮。

  随后,文件即开始下载。

  此外,在邮箱中也可以看到对应的下载确认邮件。

  打开下载文件夹,可以看到对应文件也都正在下载。

  至此,大功告成。

欢迎关注:疯狂学习GIS

### 下载 Landsat 8/9 和 Sentinel-2 高分辨率卫星遥感影像数据 #### 使用 USGS EarthExplorer 平台下载 Landsat 数据 对于希望获取 Landsat 8 或者 Landsat 9 的 30 米分辨率图像,可以通过访问由美国地质勘探局维护的 EarthExplorer 网站完成这一操作。该平台允许用户基于地理位置、日期范围以及其他筛选条件查找并下载所需的历史存档以及最新的陆地卫星产品[^2]。 #### 利用 Copernicus Open Access Hub 获取 Sentinel 数据 针对 Sentinel-2 提供的多光谱传感器所捕捉到的更高精度(10米)的地表反射率测量结果,则建议注册成为哥白尼开放访问中心的一员,并通过其界面执行相应的检索任务。此途径不仅限于浏览在线目录内的条目,还能够借助 API 接口实现自动化批量作业流程管理[^1]。 #### 借助 sentinelhub Python 库简化工作流 除了上述提到的人工交互式方法之外,sentinelhub Python 开发包同样适用于这两种类型的卫星资料提取需求。一方面,它兼容 OGC 标准协议下的 WMS/WCS 请求;另一方面,也集成了同亚马逊云服务之间的对接机制,方便开发者灵活选用最适合自己应用场景的技术路线来进行后续的数据预处理与分析活动[^3]。 ```python from sentinelhub import ( SHConfig, MimeType, CRS, BBox, DataCollection, bbox_to_dimensions, SentinelHubRequest, ) config = SHConfig() if not config.aws_access_key_id or not config.aws_secret_access_key: print("Warning! To use AWS services, please provide your credentials.") bbox_coords_wgs84 = [14.005762, 46.238201, 14.044471, 46.265171] resolution = 10 bbox = BBox(bbox_coords_wgs84, crs=CRS.WGS84) size = bbox_to_dimensions(bbox, resolution=resolution) evalscript_true_color = """ //VERSION=3 function setup() { return { input: ["B02", "B03", "B04"], output: { bands: 3 } }; } function evaluatePixel(sample) { return [sample.B04, sample.B03, sample.B02]; } """ request_true_color = SentinelHubRequest( evalscript=evalscript_true_color, input_data=[ SentinelHubRequest.input_data( data_collection=DataCollection.SENTINEL2_L2A, time_interval=('2021-06-01', '2021-06-30'), ) ], responses=[SentinelHubRequest.output_response('default', MimeType.PNG)], bbox=bbox, size=size, config=config ) image = request_true_color.get_data()[0] with open('true_color_image.png', mode='wb') as file_handler: file_handler.write(image) ```
评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

疯狂学习GIS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值