洛谷 小a和uim之大逃离

题意 : 有一个 n*m的巨幅矩阵,矩阵的每个格子上有一坨0~k不等量的魔液。怪物各给了小a和uim一个魔瓶,说道,你们可以从矩阵的任一个格子开始,每次向右或向下走一步,从任一个格子结束。开始时小a用魔瓶吸收地面上的魔液,下一步由uim吸收,如此交替下去,并且要求最后一步必须由uim吸收。魔瓶只有k的容量,也就是说,如果装了k+1那么魔瓶会被清空成零,如果装了k+2就只剩下1,依次类推。怪物还说道,最后谁的魔瓶装的魔液多,谁就能活下来。小a和uim感情深厚,情同手足,怎能忍心让小伙伴离自己而去呢?沉默片刻,小a灵机一动,如果他俩的魔瓶中魔液一样多,不就都能活下来了吗?小a和他的小伙伴都笑呆了! 现在他想知道他们都能活下来有多少种方法。


题解 这个题应该用dp解决 以前没见过这种方法 和 i 还是自己做题太少啊。
用 dp(i,j,u,k) 表示当前在位置 (i,j) 第一个人拿到的液体减掉第二个人拿到的液体之差 ((mod k) 的条件下 ) 最后一维表示现在该那个人拿东西了,终点位i,j的路径条数。 (起点任意)

这样

dp[i][j][u][0] += dp[i][j - 1][((k - a[i][j] + u) % k + k) % k][1];

dp[i][j][u][0] += dp[i - 1][j][((k - a[i][j] + u) % k + k) % k][1]

dp[i][j][u][1] += dp[i - 1][j][(((a[i][j] + u) % k) + k) % k][0];

dp[i][j][u][1] += dp[i][j - 1][(((a[i][j] + u) % k) + k) % k][0];

0.1表示现在该哪个人拿东西,这个时候 0、1之间就可以互相转化了。

一定是从0转移到1 从1转移到0; 液体的体积根据关系也可以转移。


//#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#define ll long long
using  namespace std;
const int maxn = 805;
const int mod = 1e9 + 7;
int dp[maxn][maxn][20][2] = {0};
int a[maxn][maxn] = {0};
int n,m,k;
int i,j,u;
int ans = 0;
int main () {
    scanf ("%d%d%d",&n,&m,&k);
    k ++;
    for (i = 1;i <= n; ++ i) {
        for (j = 1;j <= m; ++ j) scanf ("%d",&a[i][j]);
    }
    for (i = 1;i <= n; ++ i) {
        for (j = 1;j <= m; ++ j) {
            dp[i][j][a[i][j] % k][0] = 1;
        }
    }
    for (i = 1;i <= n; ++ i){
        for (j = 1;j <= m; ++ j) {
            for (u = 0;u < k; ++ u) {
                dp[i][j][u][0] += dp[i][j - 1][((k - a[i][j] + u) % k + k) % k][1];
                dp[i][j][u][0] += dp[i - 1][j][((k - a[i][j] + u) % k + k) % k][1];
                if (dp[i][j][u][0] >= mod) dp[i][j][u][0] %= mod;
                dp[i][j][u][1] += dp[i - 1][j][(((a[i][j] + u) % k) + k) % k][0];
                dp[i][j][u][1] += dp[i][j - 1][(((a[i][j] + u) % k) + k) % k][0];
                if (dp[i][j][u][1] >= mod)
                dp[i][j][u][1] %= mod;
            }
        }
    }
    for (i = 1;i <= n; ++ i) {
        for (j = 1;j <= m; ++ j) {
            ans += dp[i][j][0][1];
            if (ans >= mod) ans %= mod;
        }
    }
    ans %= mod;
    printf ("%d\n",ans);
    return 0;
}



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值