239. 滑动窗口最大值 347.前 K 个高频元素
239. 滑动窗口最大值
1.思路
需要一个队列,这个队列呢,放进去窗口里的元素,然后随着窗口的移动,队列也一进一出,每次移动之后,队列告诉我们里面的最大值是什么。
每次窗口移动的时候,调用que.pop(滑动窗口中移除元素的数值),que.push(滑动窗口添加元素的数值),然后que.front()就返回我们要的最大值。
队列里的元素一定是要排序的,而且要最大值放在出队口,要不然怎么知道最大值呢。
但如果把窗口里的元素都放进队列里,窗口移动的时候,队列需要弹出元素。
那么问题来了,已经排序之后的队列 怎么能把窗口要移除的元素(这个元素可不一定是最大值)弹出呢。
其实队列没有必要维护窗口里的所有元素,只需要维护有可能成为窗口里最大值的元素就可以了,同时保证队列里的元素数值是由大到小的。
那么这个维护元素单调递减的队列就叫做单调队列,即单调递减或单调递增的队列。C++中没有直接支持单调队列,需要我们自己来实现一个单调队列
不要以为实现的单调队列就是 对窗口里面的数进行排序,如果排序的话,那和优先级队列又有什么区别了呢。
对于窗口里的元素{2, 3, 5, 1 ,4},单调队列里只维护{5, 4} 就够了,保持单调队列里单调递减,此时队列出口元素就是窗口里最大元素。
此时大家应该怀疑单调队列里维护着{5, 4} 怎么配合窗口进行滑动呢?
设计单调队列的时候,pop,和push操作要保持如下规则:
pop(value):如果窗口移除的元素value等于单调队列的出口元素,那么队列弹出元素,否则不用任何操作
push(value):如果push的元素value大于入口元素的数值,那么就将队列入口的元素弹出,直到push元素的数值小于等于队列入口元素的数值为止
保持如上规则,每次窗口移动的时候,只要问que.front()就可以返回当前窗口的最大值。
为了更直观的感受到单调队列的工作过程,以题目示例为例,输入: nums = [1,3,-1,-3,5,3,6,7], 和 k = 3,操作步骤如下:
滑动窗口 | 单调队列 | 最大值 |
---|---|---|
[1,3,-1] | 3,-1 | 3 |
[3,-1,-3] | 3,-1,-3 | 3 |
[-1,-3,5] | 5 | 5 |
[-3,-5,3] | 5,3 | 5 |
[5,3,6] | 6 | 6 |
[3,6,7] | 7 | 7 |
2.代码实现
class MyQueue{
Deque<Integer> deque=new LinkedList();
void pop(int value){
// 每次弹出的时候,比较当前要弹出的数值是否等于队列出口元素的数值,如果相等则弹出。
// 同时pop之前判断队列当前是否为空
if(!deque.isEmpty()&& value==deque.peek())
deque.poll();
}
void add(int val){
while(!deque.isEmpty()&&val>deque.getLast()){
deque.removeLast();
}
deque.add(val);
}
int peek()
{
return deque.peek();
}
}
class Solution {
public int[] maxSlidingWindow(int[] nums, int k) {
int len=nums.length-k+1;
int[] res= new int[len];
int num=0;
MyQueue myQueue = new MyQueue();
for(int i=0;i<k;i++){
myQueue.add(nums[i]);
}
res[num++]=myQueue.peek();
for(int i=k;i<nums.length;i++){
myQueue.pop(nums[i-k]);//滑动窗口移除最前面的元素
myQueue.add(nums[i]);
res[num++]=myQueue.peek();
}
return res;
}
}
347.前 K 个高频元素
1.思路
这道题目主要涉及到如下三块内容:
要统计元素出现频率
对频率排序
找出前K个高频元素
首先统计元素出现的频率,这一类的问题可以使用map来进行统计。
然后是对频率进行排序,这里我们可以使用一种 容器适配器就是优先级队列。
优先级队列就是一个披着队列外衣的堆,因为优先级队列对外接口只是从队头取元素,从队尾添加元素,再无其他取元素的方式,看起来就是一个队列。而且优先级队列内部元素是自动依照元素的权值排列。那么它是如何有序排列的呢?
缺省情况下priority_queue利用max-heap(大顶堆)完成对元素的排序,这个大顶堆是以vector为表现形式的complete binary tree(完全二叉树)。
所以大家经常说的大顶堆(堆头是最大元素),小顶堆(堆头是最小元素),如果懒得自己实现的话,就直接用priority_queue(优先级队列)就可以了,底层实现都是一样的,从小到大排就是小顶堆,从大到小排就是大顶堆。
本题我们就要使用优先级队列来对部分频率进行排序。
为什么不用快排呢, 使用快排要将map转换为vector的结构,然后对整个数组进行排序, 而这种场景下,我们其实只需要维护k个有序的序列就可以了,所以使用优先级队列是最优的。
是使用小顶堆呢,还是大顶堆?
定义一个大小为k的大顶堆,在每次移动更新大顶堆的时候,每次弹出都把最大的元素弹出去了,那么怎么保留下来前K个高频元素呢。
而且使用大顶堆就要把所有元素都进行排序,那能不能只排序k个元素呢
所以我们要用小顶堆,因为要统计最大前k个元素,只有小顶堆每次将最小的元素弹出,最后小顶堆里积累的才是前k个最大元素。
2.代码实现
//大顶堆的实现方式在代码随想录中有
//此处是用小顶堆的实现方式
class Solution {
public int[] topKFrequent(int[] nums, int k) {
Map<Integer,Integer> map=new HashMap<>();
for(int num:nums){
map.put(num,map.getOrDefault(num,0)+1);
}
//在优先队列中存储二元组(num,cnt),cnt表示元素值num在数组中的出现次数
//出现次数按从队头到队尾的顺序是从小到大排,出现次数最低的在队头(相当于小顶堆)
PriorityQueue<int[]> pq= new PriorityQueue<>((pair1,pair2)->pair1[1]-pair2[1]);
//小顶堆只需要维持k个元素有序
for(Map.Entry<Integer,Integer> entry:map.entrySet() ){
if(pq.size()<k){
pq.add(new int[]{entry.getKey(),entry.getValue()});}
else{
if(entry.getValue()>pq.peek()[1]){
pq.poll();
pq.add(new int[]{entry.getKey(),entry.getValue()});
}
}
}
int[] ans= new int[k];
int n=k-1;
while(n>=0){
ans[n]=pq.poll()[0];
n--;
}
return ans;
}
}