● 110.平衡二叉树 ● 257. 二叉树的所有路径 ● 404.左叶子之和
● 110.平衡二叉树
1.思路
方法一:递归
可以用迭代实现 但我没看懂
此题既然要求比较高度,必然是要后序遍历。
求深度应用前序遍历
递归三步曲分析:
1.明确递归函数的参数和返回值
参数:当前传入节点。 返回值:以当前传入节点为根节点的树的高度。
那么如何标记左右子树是否差值大于1呢?
如果当前传入节点为根节点的二叉树已经不是二叉平衡树了,还返回高度的话就没有意义了。
所以如果已经不是二叉平衡树了,可以返回-1 来标记已经不符合平衡树的规则了。
2.明确终止条件
递归的过程中依然是遇到空节点了为终止,返回0,表示当前节点为根节点的树高度为0
3.明确单层递归的逻辑
如何判断以当前传入节点为根节点的二叉树是否是平衡二叉树呢?当然是其左子树高度和其右子树高度的差值。
分别求出其左右子树的高度,然后如果差值小于等于1,则返回当前二叉树的高度,否则返回-1,表示已经不是二叉平衡树了。
此时递归的函数就已经写出来了,这个递归的函数传入节点指针,返回以该节点为根节点的二叉树的高度,如果不是二叉平衡树,则返回-1。
方法二:迭代法
没看
2.代码实现
递归法
class Solution {
private int getheight(TreeNode root){
if(root==null)
return 0;
int leftheight=getheight(root.left);
if(leftheight==-1)
return -1;
int rightheight=getheight(root.right);
if(rightheight==-1)
return -1;
if(Math.abs(leftheight-rightheight)>1)
return -1;
else
return Math.max(leftheight,rightheight)+1;
}
public boolean isBalanced(TreeNode root) {
return getheight(root)==-1?false:true;
}
}
● 257. 二叉树的所有路径
1.思路
方法一:递归
这道题目要求从根节点到叶子的路径,所以需要前序遍历,这样才方便让父节点指向孩子节点,找到对应的路径。
在这道题目中将第一次涉及到回溯,因为我们要把路径记录下来,需要回溯来回退一个路径再进入另一个路径。
先使用递归的方式,来做前序遍历。要知道递归和回溯就是一家的,本题也需要回溯。
递归三步曲:
1.递归函数参数以及返回值
要传入根节点,记录每一条路径的path,和存放结果集的result,这里递归不需要返回值,
2.确定递归终止条件
本题要找到叶子节点,就开始结束的处理逻辑了(把路径放进result里)。
那么什么时候算是找到了叶子节点? 是当 cur不为空,其左右孩子都为空的时候,就找到叶子节点。
3.确定单层递归逻辑
因为是前序遍历,需要先处理中间节点,中间节点就是我们要记录路径上的节点,先放进path中。
然后是递归和回溯的过程,上面说过没有判断cur是否为空,那么在这里递归的时候,如果为空就不进行下一层递归了。
递归完,要做回溯,因为path 不能一直加入节点,它还要删节点,然后才能加入新的节点。
回溯和递归是一一对应的,有一个递归,就要有一个回溯,所以回溯要和递归永远在一起
2.代码实现
class Solution {
public List<String> binaryTreePaths(TreeNode root) {
List<String> res= new ArrayList<>();//存所有路径
if(root==null)
return res;
List<Integer> paths=new ArrayList<>();//存放遍历的每一条路径
tranversal(root,paths,res);
return res;
}
private void tranversal(TreeNode root, List<Integer> paths, List<String> res){
paths.add(root.val);
if(root.left==null&& root.right==null)
{
StringBuilder sb=new StringBuilder();
for(int i=0;i<paths.size()-1;i++){
sb.append(paths.get(i)).append("->");
}
sb.append(paths.get(paths.size()-1));
res.add(sb.toString());
return;
}
if(root.left!=null){
tranversal(root.left,paths,res);
paths.remove(paths.size()-1);
}
if(root.right!=null){
tranversal(root.right,paths,res);
paths.remove(paths.size()-1);
}
}
}
● 404.左叶子之和
1.思路
左叶子的明确定义:节点A的左孩子不为空,且左孩子的左右孩子都为空(说明是叶子节点),那么A节点的左孩子为左叶子节点
判断当前节点是不是左叶子是无法判断的,必须要通过节点的父节点来判断其左孩子是不是左叶子。
如果该节点的左节点不为空,该节点的左节点的左节点为空,该节点的左节点的右节点为空,则找到了一个左叶子
if (node->left != NULL && node->left->left == NULL && node->left->right == NULL) {
左叶子节点处理逻辑
}
递归的遍历顺序为后序遍历(左右中),是因为要通过递归函数的返回值来累加求取左叶子数值之和。
递归三部曲:
1.确定递归函数的参数和返回值
判断一个树的左叶子节点之和,那么一定要传入树的根节点,递归函数的返回值为数值之和,所以为int
使用题目中给出的函数就可以了。
2.确定终止条件
如果遍历到空节点,那么左叶子值一定是0
只有当前遍历的节点是父节点,才能判断其子节点是不是左叶子。 所以如果当前遍历的节点是叶子节点,那其左叶子也必定是0
3.确定单层递归的逻辑
当遇到左叶子节点的时候,记录数值,然后通过递归求取左子树左叶子之和,和 右子树左叶子之和,相加便是整个树的左叶子之和。
迭代法看不懂
2.代码实现
class Solution {
public int sumOfLeftLeaves(TreeNode root) {
if(root==null)
return 0;
if(root.left==null && root.right ==null)
return 0;
int leftnum = sumOfLeftLeaves(root.left);//左
//从父结点判断是否是左叶子
if(root.left!=null&& root.left.left==null && root.left.right==null) // 左子树就是一个左叶子的情况
leftnum=root.left.val;
int rightnum=sumOfLeftLeaves(root.right);//右
int sum=leftnum+rightnum;//中
return sum;
}
}