hive学习笔记之二:复杂数据类型(1)

  1. 分桶

  2. HiveQL基础

  3. 内置函数

  4. Sqoop

  5. 基础UDF

  6. 用户自定义聚合函数(UDAF)

  7. UDTF

本篇概览

  • 作为《hive学习笔记》的第二篇,前面咱们了解了基本类型,本篇要学习的是复杂数据类型;

  • 复杂数据类型一共有四种:

  1. ARRAY:数组

  2. MAP:键值对

  3. STRUCT:命名字段集合

  4. UNION:从几种数据类型中指明选择一种,UNION的值必须于这些数据类型之一完全匹配;

  • 接下来逐个学习;

准备环境

  1. 确保hadoop已经启动;

  2. 进入hive控制台的交互模式;

  3. 执行以下命令,使查询结果中带有字段名:

set hive.cli.print.header=true;

ARRAY

  1. 创建名为t2的表,只有person和friends两个字段,person是字符串类型,friends是数组类型,通过文本文件导入数据时,person和friends之间的分隔符是竖线,friends内部的多个元素之间的分隔符是逗号,注意声明分隔符的语法:

create table if not exists t2(

person string,

friends array

)

row format delimited

fields terminated by ‘|’

collection items terminated by ‘,’;

  1. 创建文本文件002.txt,内容如下,可见只有两条记录,第一条person字段值为tom,friends字段里面有三个元素,用逗号分隔:

tom|tom_friend_0,tom_friend_1,tom_friend_2

jerry|jerry_friend_0,jerry_friend_1,jerry_friend_2,jerry_friend_3,jerry_friend_4,jerry_friend_5

  1. 执行以下语句,从本地的002.txt文件导入数据到t2表:

load data local inpath ‘/home/hadoop/temp/202010/25/002.txt’ into table t2;

  1. 查看全部数据:

hive> select * from t2;

OK

t2.person t2.friends

tom [“tom_friend_0”,“tom_friend_1”,“tom_friend_2”]

jerry [“jerry_friend_0”,“jerry_friend_1”,“jerry_friend_2”,“jerry_friend_3”,“jerry_friend_4”,“jerry_friend_5”]

Time taken: 0.052 seconds, Fetched: 2 row(s)

  1. 查询friends中的某个元素的SQL:

select person, friends[0], friends[3] from t2;

执行结果如下,第一条记录没有friends[3],显示为NULL:

hive> select person, friends[0], friends[3] from t2;

OK

person _c1 _c2

tom tom_friend_0 NULL

jerry jerry_friend_0 jerry_friend_3

Time taken: 0.052 seconds, Fetched: 2 row(s)

  1. 数组元素中是否包含某值的SQL:

select person, array_contains(friends, ‘tom_friend_0’) from t2;

执行结果如下,第一条记录friends数组中有tom_friend_0,显示为true,第二条记录不包含,就显示false:

hive> select person, array_contains(friends, ‘tom_friend_0’) from t2;

OK

person _c1

tom true

jerry false

Time taken: 0.061 seconds, Fetched: 2 row(s)

  1. 第一条记录的friends数组中有三个元素,借助LATERAL VIEW语法可以把这三个元素拆成三行,SQL如下:

select t.person, single_friend

from (

select person, friends

from t2 where person=‘tom’

) t LATERAL VIEW explode(t.friends) v as single_friend;

执行结果如下,可见数组中的每个元素都能拆成单独一行:

OK

t.person single_friend

tom tom_friend_0

tom tom_friend_1

tom tom_friend_2

Time taken: 0.058 seconds, Fetched: 3 row(s)

  • 以上就是数组的基本操作,接下来是键值对;

MAP,建表,导入数据

  • 接下来打算创建名为t3的表,只有person和address两个字段,person是字符串类型,address是MAP类型,通过文本文件导入数据时,对分隔符的定义如下:
  1. person和address之间的分隔符是竖线;

  2. address内部有多个键值对,它们的分隔符是逗号;

  3. 而每个键值对的键和值的分隔符是冒号;

  • 满足上述要求的建表语句如下所示:

create table if not exists t3(

person string,

address map<string, string>

)

row format delimited

fields terminated by ‘|’

collection items terminated by ‘,’

map keys terminated by ‘:’;

  • 创建文本文件003.txt,可见用了三种分隔符来分隔字段、MAP中的多个元素、每个元素键和值:

tom|province:guangdong,city:shenzhen

jerry|province:jiangsu,city:nanjing

  • 导入003.txt的数据到t3表:

load data local inpath ‘/home/hadoop/temp/202010/25/003.txt’ into table t3;

MAP,查询

  1. 查看全部数据:

hive> select * from t3;

OK

t3.person t3.address

tom {“province”:“guangdong”,“city”:“shenzhen”}

jerry {“province”:“jiangsu”,“city”:“nanjing”}

Time taken: 0.075 seconds, Fetched: 2 row(s)

  1. 查看MAP中的某个key,语法是field[“xxx”]:

hive> select person, address[“province”] from t3;

OK

person _c1

tom guangdong

jerry jiangsu

Time taken: 0.075 seconds, Fetched: 2 row(s)

  1. 使用if函数,下面的SQL是判断address字段中是否有"street"键,如果有就显示对应的值,没有就显示filed street not exists:

select person,

if(address[‘street’] is null, “filed street not exists”, address[‘street’])

from t3;

输出如下,由于address字段只有province和city两个键,因此会显示filed street not exists:

OK

tom filed street not exists

jerry filed street not exists

Time taken: 0.087 seconds, Fetched: 2 row(s)

  1. 使用explode将address字段的每个键值对展示成一行:

hive> select explode(address) from t3;

OK

province guangdong

city shenzhen

province jiangsu

city nanjing

Time taken: 0.081 seconds, Fetched: 4 row(s)

  1. 上面的explode函数只能展示address字段,如果还要展示其他字段就要继续LATERAL VIEW语法,如下,可见前面的数组展开为一个字段,MAP展开为两个字段,分别是key和value:

select t.person, address_key, address_value

from (

select person, address

from t3 where person=‘tom’

) t LATERAL VIEW explode(t.address) v as address_key, address_value;

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Java工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Java开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!

如果你觉得这些内容对你有帮助,可以扫码获取!!(备注:Java)

总结

在这里,由于面试中MySQL问的比较多,因此也就在此以MySQL为例为大家总结分享。但是你要学习的往往不止这一点,还有一些主流框架的使用,Spring源码的学习,Mybatis源码的学习等等都是需要掌握的,我也把这些知识点都整理起来了

面试真题

Spring源码笔记

《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!
识点,真正体系化!**

由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!

如果你觉得这些内容对你有帮助,可以扫码获取!!(备注:Java)

[外链图片转存中…(img-D1rMW5Kb-1713855369883)]

总结

在这里,由于面试中MySQL问的比较多,因此也就在此以MySQL为例为大家总结分享。但是你要学习的往往不止这一点,还有一些主流框架的使用,Spring源码的学习,Mybatis源码的学习等等都是需要掌握的,我也把这些知识点都整理起来了

[外链图片转存中…(img-A82dULDl-1713855369883)]

[外链图片转存中…(img-slDQrgRi-1713855369883)]

《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值