本篇概览
-
作为《hive学习笔记》的第二篇,前面咱们了解了基本类型,本篇要学习的是复杂数据类型;
-
复杂数据类型一共有四种:
-
ARRAY:数组
-
MAP:键值对
-
STRUCT:命名字段集合
-
UNION:从几种数据类型中指明选择一种,UNION的值必须于这些数据类型之一完全匹配;
- 接下来逐个学习;
准备环境
-
确保hadoop已经启动;
-
进入hive控制台的交互模式;
-
执行以下命令,使查询结果中带有字段名:
set hive.cli.print.header=true;
ARRAY
- 创建名为t2的表,只有person和friends两个字段,person是字符串类型,friends是数组类型,通过文本文件导入数据时,person和friends之间的分隔符是竖线,friends内部的多个元素之间的分隔符是逗号,注意声明分隔符的语法:
create table if not exists t2(
person string,
friends array
)
row format delimited
fields terminated by ‘|’
collection items terminated by ‘,’;
- 创建文本文件002.txt,内容如下,可见只有两条记录,第一条person字段值为tom,friends字段里面有三个元素,用逗号分隔:
tom|tom_friend_0,tom_friend_1,tom_friend_2
jerry|jerry_friend_0,jerry_friend_1,jerry_friend_2,jerry_friend_3,jerry_friend_4,jerry_friend_5
- 执行以下语句,从本地的002.txt文件导入数据到t2表:
load data local inpath ‘/home/hadoop/temp/202010/25/002.txt’ into table t2;
- 查看全部数据:
hive> select * from t2;
OK
t2.person t2.friends
tom [“tom_friend_0”,“tom_friend_1”,“tom_friend_2”]
jerry [“jerry_friend_0”,“jerry_friend_1”,“jerry_friend_2”,“jerry_friend_3”,“jerry_friend_4”,“jerry_friend_5”]
Time taken: 0.052 seconds, Fetched: 2 row(s)
- 查询friends中的某个元素的SQL:
select person, friends[0], friends[3] from t2;
执行结果如下,第一条记录没有friends[3],显示为NULL:
hive> select person, friends[0], friends[3] from t2;
OK
person _c1 _c2
tom tom_friend_0 NULL
jerry jerry_friend_0 jerry_friend_3
Time taken: 0.052 seconds, Fetched: 2 row(s)
- 数组元素中是否包含某值的SQL:
select person, array_contains(friends, ‘tom_friend_0’) from t2;
执行结果如下,第一条记录friends数组中有tom_friend_0,显示为true,第二条记录不包含,就显示false:
hive> select person, array_contains(friends, ‘tom_friend_0’) from t2;
OK
person _c1
tom true
jerry false
Time taken: 0.061 seconds, Fetched: 2 row(s)
- 第一条记录的friends数组中有三个元素,借助LATERAL VIEW语法可以把这三个元素拆成三行,SQL如下:
select t.person, single_friend
from (
select person, friends
from t2 where person=‘tom’
) t LATERAL VIEW explode(t.friends) v as single_friend;
执行结果如下,可见数组中的每个元素都能拆成单独一行:
OK
t.person single_friend
tom tom_friend_0
tom tom_friend_1
tom tom_friend_2
Time taken: 0.058 seconds, Fetched: 3 row(s)
- 以上就是数组的基本操作,接下来是键值对;
MAP,建表,导入数据
- 接下来打算创建名为t3的表,只有person和address两个字段,person是字符串类型,address是MAP类型,通过文本文件导入数据时,对分隔符的定义如下:
-
person和address之间的分隔符是竖线;
-
address内部有多个键值对,它们的分隔符是逗号;
-
而每个键值对的键和值的分隔符是冒号;
- 满足上述要求的建表语句如下所示:
create table if not exists t3(
person string,
address map<string, string>
)
row format delimited
fields terminated by ‘|’
collection items terminated by ‘,’
map keys terminated by ‘:’;
- 创建文本文件003.txt,可见用了三种分隔符来分隔字段、MAP中的多个元素、每个元素键和值:
tom|province:guangdong,city:shenzhen
jerry|province:jiangsu,city:nanjing
- 导入003.txt的数据到t3表:
load data local inpath ‘/home/hadoop/temp/202010/25/003.txt’ into table t3;
MAP,查询
- 查看全部数据:
hive> select * from t3;
OK
t3.person t3.address
tom {“province”:“guangdong”,“city”:“shenzhen”}
jerry {“province”:“jiangsu”,“city”:“nanjing”}
Time taken: 0.075 seconds, Fetched: 2 row(s)
- 查看MAP中的某个key,语法是field[“xxx”]:
hive> select person, address[“province”] from t3;
OK
person _c1
tom guangdong
jerry jiangsu
Time taken: 0.075 seconds, Fetched: 2 row(s)
- 使用if函数,下面的SQL是判断address字段中是否有"street"键,如果有就显示对应的值,没有就显示filed street not exists:
select person,
if(address[‘street’] is null, “filed street not exists”, address[‘street’])
from t3;
输出如下,由于address字段只有province和city两个键,因此会显示filed street not exists:
OK
tom filed street not exists
jerry filed street not exists
Time taken: 0.087 seconds, Fetched: 2 row(s)
- 使用explode将address字段的每个键值对展示成一行:
hive> select explode(address) from t3;
OK
province guangdong
city shenzhen
province jiangsu
city nanjing
Time taken: 0.081 seconds, Fetched: 4 row(s)
- 上面的explode函数只能展示address字段,如果还要展示其他字段就要继续LATERAL VIEW语法,如下,可见前面的数组展开为一个字段,MAP展开为两个字段,分别是key和value:
select t.person, address_key, address_value
from (
select person, address
from t3 where person=‘tom’
) t LATERAL VIEW explode(t.address) v as address_key, address_value;
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Java工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Java开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!
如果你觉得这些内容对你有帮助,可以扫码获取!!(备注:Java)
总结
在这里,由于面试中MySQL问的比较多,因此也就在此以MySQL为例为大家总结分享。但是你要学习的往往不止这一点,还有一些主流框架的使用,Spring源码的学习,Mybatis源码的学习等等都是需要掌握的,我也把这些知识点都整理起来了
《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!
识点,真正体系化!**
由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!
如果你觉得这些内容对你有帮助,可以扫码获取!!(备注:Java)
[外链图片转存中…(img-D1rMW5Kb-1713855369883)]
总结
在这里,由于面试中MySQL问的比较多,因此也就在此以MySQL为例为大家总结分享。但是你要学习的往往不止这一点,还有一些主流框架的使用,Spring源码的学习,Mybatis源码的学习等等都是需要掌握的,我也把这些知识点都整理起来了
[外链图片转存中…(img-A82dULDl-1713855369883)]
[外链图片转存中…(img-slDQrgRi-1713855369883)]
《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!