第三章 栈和队列【24王道数据结构笔记】

1.栈

1.1 栈的基本概念

  • 只允许在一端(栈顶top)进行插入或删除操作的受限的线性表。
  • 后进先出(Last In First Out)LIFO。或者说先进后出FILO。

  

进栈顺序:a1 > a2 > a3 > a4 > a5
出栈顺序:a5 > a4 > a3 > a2 > a1 

 1.2 栈的基本操作


InitStack(&S):初始化栈。构造一个空栈 S,分配内存空间。
DestroyStack(&S):销毁栈。销毁并释放栈 S 所占用的内存空间。
Push(&S, x):进栈。若栈 S 未满,则将 x 加入使其成为新的栈顶元素。
Pop(&S, &x):出栈。若栈 S 非空,则弹出(删除)栈顶元素,并用 x 返回。
GetTop(S, &x):读取栈顶元素。若栈 S 非空,则用 x 返回栈顶元素。
StackEmpty(S):判空。断一个栈 S 是否为空,若 S 为空,则返回 true,否则返回 false。

1.2.1 栈的顺序存储实现

 【顺序栈的定义】

#define MaxSize 10              //定义栈中元素的最大个数
 
typedef struct{
    ElemType data[MaxSize];     //静态数组存放栈中元素
    int top;                    //栈顶元素
}SqStack;
 
void testStack(){
    SqStack S;                 //声明一个顺序栈(分配空间)
                               //连续的存储空间大小为 MaxSize*sizeof(ElemType)
}

 【顺序栈的初始化

#define MaxSize 10
typedef struct{   
	ElemType data[MaxSize];    
    int top;
}SqStack;
 
// 初始化栈顶为-1,栈顶指针指向栈顶
void InitStack(SqStack &S){ 
    S.top = -1;                   //初始化栈顶指针
}
 
// 判断栈是否为空
bool StackEmpty(SqStack S){    
    if(S.top == -1)        
        return true;    
    else        
        return false;
}

// 初始化栈顶为0,栈顶指针指向栈顶的下一个空位
void InitStack(SqStack &S){ 
    S.top = 0;                   //初始化栈顶指针
}
 
// 判断栈是否为空
bool StackEmpty(SqStack S){    
    if(S.top == 0)        
        return true;    
    else        
        return false;
}

 【顺序栈的入栈出栈】

初始化为-1时
// 新元素进栈
bool Push(SqStack &S, ElemType x){    
    if(S.top == MaxSize - 1)   // 判断栈是否已满         
        return false;    
    S.data[++S.top] = x;    
    return true;
}
 
// 出栈
bool Pop(SqStack &x, ElemType &x){     
    if(S.top == -1)  // 判断栈是否为空         
        return false;    
    x = S.data[S.top--];    
    return true;
}

初始化为0时
// 新元素进栈
bool Push(SqStack &S, ElemType x){    
    if(S.top == MaxSize)   // 判断栈是否已满         
        return false;    
    S.data[S.top++] = x;    
    return true;
}
 
// 出栈
bool Pop(SqStack &x, ElemType &x){     
    if(S.top == 0)  // 判断栈是否为空         
        return false;    
    x = S.data[--S.top];    
    return true;
}

【读取栈顶元素】 

// 读栈顶元素
初始化为-1时
bool GetTop(SqStack S, ElemType &x){        
    if(S.top == -1) 先判空,非空读取才有意义               
        return false;        
    x = S.data[S.top];        
    return true; 
}

初始化为-1时
bool GetTop(SqStack S, ElemType &x){        
    if(S.top == 0)                
        return false;        
    x = S.data[S.top-1];        
    return true; 
}

 【读取栈的长度】 

// 获取当前栈长
当初始化为-1
int GetSize(SqStack S){        
    return S.top + 1; 
}

当初始化为0
int GetSize(SqStack S){        
    return S.top; 
}

共享栈(两个栈共享同一片空间)】

  • 共享栈--特殊的顺序栈
  • 将栈底设计在共享空间的两端,栈顶向中间靠拢
#define MaxSize 10         //定义栈中元素的最大个数
 
typedef struct{
    ElemType data[MaxSize];       //静态数组存放栈中元素
    int top0;                     //0号栈栈顶指针
    int top1;                     //1号栈栈顶指针
}ShStack;
 
//初始化栈
void InitSqStack(ShStack &S){
    S.top0 = -1;        //初始化栈顶指针
    S.top1 = MaxSize;   
}

1.2.2 栈的链式存储

【链栈的定义】

  • 定义:采用链式存储的栈称为链栈。
  • 优点:链栈的优点是便于多个栈共享存储空间和提高其效率,且不存在栈满上溢的情况。
  • 特点:进栈和出栈都只能在栈顶一端进行(链头作为栈顶)

链表的头部作为栈顶,意味着:

  • 1. 在实现数据"入栈"操作时,需要将数据从链表的头部插入;
  • 2. 在实现数据"出栈"操作时,需要删除链表头部的首元节点;

因此,链栈实际上就是一个只能采用头插法插入或删除数据的链表;
栈的链式存储结构可描述为:

【链栈的定义】

typedef struct Linknode{        
    ElemType data;        //数据域    
    Linknode *next;       //指针域
}Linknode,*LiStack;
 
void testStack(){   
    LiStack L;            //声明一个链栈
}

【链栈的初始化】

typedef struct Linknode{       
    ElemType data;      
    Linknode *next;
}Linknode,*LiStack;
 
// 初始化栈
bool InitStack(LiStack &L){    // 生成虚拟头节点,并将其next指针置空
    L = (Linknode *)malloc(sizeof(Linknode));   
    if(L == NULL)             
        return false;   
    L->next = NULL;    
    return true;
}
 
// 判断栈是否为空
bool isEmpty(LiStack &L){    
    if(L->next == NULL)      
        return true;   
    else           
        return false;
}

【入栈出栈】

// 新元素入栈
bool pushStack(LiStack &L,ElemType x){  
    Linknode *s = (Linknode *)malloc(sizeof(Linknode));  
    if(s == NULL)         
        return false;   
    s->data = x;     
    // 头插法      
    s->next = L->next;  
    L->next = s;     
    return true;
}
 
// 出栈
bool popStack(LiStack &L, int &x){     
    // 栈空不能出栈  
    if(L->next == NULL)     
        return false;    
    Linknode *s = L->next;  
    x = s->data;       
    L->next = s->next;
    free(s);
    s = NULL;       
    return true;
}

 2. 队列

2.1 队列的基本概念

  • 只允许在表的一端(队尾)插入,表的另一端(队头)进行删除操作的受限的线性表。
  • 特点:先进先出(先入队的元素先出队)、FIFO(First In First Out),后入后出LILO。
 

2.2 队列的基本操作


InitQueue(&Q):初始化队列,构造一个空队列Q。
QueueEmpty(Q):判队列空,若队列Q为空返回true,否则返回false。
EnQueue(&Qx):入队,若队列Q未满,则将x加入使之成为新的队尾。
DeQueue(&Q&x):出队,若队列Q非空,则删除队头元素,并用x返回。
GetHead(Q&x):读队头元素,若队列Q非空则用x返回队头元素。
ClearQueue(&Q):销毁队列,并释放队列Q占用的内存空间。
【队列的顺序存储实现 】

队头指针:指向队头元素
队尾指针:指向队尾元素或者队尾的下一个位置

【顺序队列的定义】

#define MaxSize 10;     //定义队列中元素的最大个数
 
typedef struct{     
    ElemType data[MaxSize];   //用静态数组存放队列元素     
    int front, rear;          //队头指针和队尾指针
}SqQueue;
 
void test{     
    SqQueue Q;                //声明一个队列
}

顺序队列的初始化】

#define MaxSize 10;
 
typedef struct{   
    ElemType data[MaxSize];  
    int front, rear;
}SqQueue;
 
// 初始化队列
void InitQueue(SqQueue &Q){    
    // 初始化时,队头、队尾指针指向0   
    // 队尾指针指向的是即将插入数据的数组下标  
    // 队头指针指向的是队头元素的数组下标
    Q.rear = Q.front = 0;
}
 
// 判断队列是否为空
bool QueueEmpty(SqQueue Q){     
    if(Q.rear == Q.front)            
        return true;   
    else          
        return false;
}

【入队出队(循环队列)】

// 新元素入队
bool EnQueue(SqQueue &Q, ElemType x){       
    // 如果队列已满直接返回
    if((Q.rear+1)%MaxSize == Q.front) 	//牺牲一个单元区分队空和队满   
        return false;    
    Q.data[Q.rear] = x;   
    Q.rear = (Q.rear+1)%MaxSize; 
    return true;
}
 
// 出队
bool DeQueue(SqQueue &Q, ElemType &x){    
    // 如果队列为空直接返回    
    if(Q.rear == Q.front)  
        return false;     
    x = Q.data[Q.front];  
    Q.front = (Q.front+1)%MaxSize;
    return true;
}
  • 循环队列不能直接使用Q.rear == Q.front作为判空的条件,因为当队列已满时也符合该条件,会与判空发生冲突!

解决方法一:牺牲一个单元来区分队空和队满,即将(Q.rear+1)%MaxSize == Q.front作为判断队列是否已满的条件。(主流方法)
解决方法二:设置 size 变量记录队列长度。

#define MaxSize 10; 
 
typedef struct{   
    ElemType data[MaxSize]; 
    int front, rear;    
    int size;
}SqQueue;
 
// 初始化队列
void InitQueue(SqQueue &Q){ 
    Q.rear = Q.front = 0;   
    Q.size = 0;
}
 
// 判断队列是否为空
bool QueueEmpty(SqQueue 0){     
    if(Q.size == 0)      
        return true;   
    else       
        return false;
}
 
// 新元素入队
bool EnQueue(SqQueue &Q, ElemType x){ 
    if(Q.size == MaxSize)    
        return false;
    Q.size++; 
    Q.data[Q.rear] = x; 
    Q.rear = (Q.rear+1)%MaxSize;  
    return true;
}
 
// 出队
bool DeQueue(SqQueue &Q, ElemType &x){   
    if(Q.size == 0)        
        return false;
    Q.size--;
    x = Q.data[Q.front]; 
    Q.front = (Q.front+1)%MaxSize; 
    return true;
}

解决方法三:设置 tag 变量记录队列最近的操作。(tag=0:最近进行的是删除操作;tag=1 :最近进行的是插入操作)

#define MaxSize 10;   
 
typedef struct{    
    ElemType data[MaxSize]; 
    int front, rear;        
    int tag;
}SqQueue;
 
// 初始化队列
void InitQueue(SqQueue &Q){    
    Q.rear = Q.front = 0;   
    Q.tag = 0;
}
 
// 判断队列是否为空,只有tag==0即初始化或者出队后才可能为空
bool QueueEmpty(SqQueue 0){  
    if(Q.front == Q.rear && Q.tag == 0)    
        return true;   
    else       
        return false;
}
 
// 新元素入队 判断队列是否满,只有tag==1即入队后才可能满
bool EnQueue(SqQueue &Q, ElemType x){
    if(Q.rear == Q.front && tag == 1)     
        return false;     
    Q.data[Q.rear] = x; 
    Q.rear = (Q.rear+1)%MaxSize;  
    Q.tag = 1;  
    return true;
}
 
// 出队
bool DeQueue(SqQueue &Q, ElemType &x){
    if(Q.rear == Q.front && tag == 0)  
        return false;   
    x = Q.data[Q.front];
    Q.front = (Q.front+1)%MaxSize; 
    Q.tag = 0;     
    return true;
}

获得队头元素】

// 获取队头元素并存入x
bool GetHead(SqQueue &Q, ElemType &x){
    if(Q.rear == Q.front)      
        return false;
    x = Q.data[Q.front];  
    return true;
}
队列的链式存储实现

【链队列的定义】

// 链式队列结点
typedef struct LinkNode{  
    ElemType data;    
    struct LinkNode *next;
}
 
// 链式队列
typedef struct{       
    // 头指针和尾指针  
    LinkNode *front, *rear;
}LinkQueue;

【 链队列的初始化(带头结点)】

typedef struct LinkNode{    
    ElemType data;     
    struct LinkNode *next;
}LinkNode;
 
typedef struct{    
    LinkNode *front, *rear;
}LinkQueue;
 
// 初始化队列
void InitQueue(LinkQueue &Q){   
    // 初始化时,front、rear都指向头结点 
    Q.front = Q.rear = (LinkNode *)malloc(sizeof(LinkNode));  
    Q.front -> next = NULL;
}
 
// 判断队列是否为空
bool IsEmpty(LinkQueue Q){ 
    if(Q.front == Q.rear)     
        return true;      
    else         
        return false;
}

入队出队(带头结点)】

// 新元素入队
void EnQueue(LinkQueue &Q, ElemType x){ // 不存在满的情况
    LinkNode *s = (LinkNode *)malloc(sizeof(LinkNode)); 
    s->data = x;  
    s->next = NULL; 
    Q.rear->next = s;  
    Q.rear = s;
}
 
// 队头元素出队
bool DeQueue(LinkQueue &Q, ElemType &x){   
    if(Q.front == Q.rear)  // 判空       
        return false;    
    LinkNode *p = Q.front->next; 
    x = p->data;   
    Q.front->next = p->next; 
    // 如果p是最后一个结点,此时Q.rear已经要被删除了,则将队尾指针也指向队首指针  
    if(Q.rear == p)          
        Q.rear = Q.front;   
    free(p);
    p = NULL;    
    return true;
}

【不带头结点的链队列操作

typedef struct LinkNode{   
    ElemType data;  
    struct LinkNode *next;
}LinkNode;
 
typedef struct{   
    LinkNode *front, *rear;
}LinkQueue;
 
// 初始化队列
void InitQueue(LinkQueue &Q){ 
    // 不带头结点的链队列初始化,头指针和尾指针都指向NULL
    Q.front = NULL;   
    Q.rear = NULL;
}
 
// 判断队列是否为空
bool IsEmpty(LinkQueue Q){ 
    if(Q.front == NULL)   
        return true;      
    else             
        return false;
}
 
// 新元素入队
void EnQueue(LinkQueue &Q, ElemType x){ 
    LinkNode *s = (LinkNode *)malloc(sizeof(LinkNode));  
    s->data = x;   
    s->next = NULL; 
    // 第一个元素入队时需要特别处理   
    if(Q.front == NULL){
        Q.front = s;    
        Q.rear = s; 
    }else{
        Q.rear->next = s;
        Q.rear = s;
    }
}
 
//队头元素出队
bool DeQueue(LinkQueue &Q, ElemType &x){
    if(Q.front == NULL)
        return false;
    LinkNode *s = Q.front;
    x = s->data;
    if(Q.front == Q.rear){
        Q.front = Q.rear = NULL;
    }else{
        Q.front = Q.front->next;
    }
    free(s);
    return true;
}
双端队列

双端队列定义 

  • 双端队列是允许从两端插入、两端删除的线性表。
  • 如果只使用其中一端的插入、删除操作,则等同于栈。
  • 输入受限的双端队列:允许一端插入,两端删除的线性表。
  • 输出受限的双端队列:允许两端插入,一端删除的线性表。

双端队列考点:判断输出序列的合法化

  • 例:数据元素输入序列为 1,2,3,4,判断 4! = 24 个输出序列的合法性
           输入受限的双端队列:只有 4213 和 4231 不合法
           输出受限的双端队列:只有 4132 和 4231 不合法

3. 栈与队列的应用

3.1栈在括号匹配中的应用

  • 用栈实现括号匹配:
    1. 最后出现的左括号最先被匹配 (栈的特性——LIFO)。
    2. 遇到左括号就入栈(可以把对应右括号入栈,这样遇到右括号只需要判断是否和栈顶相等。
    3. 遇到右括号,就“消耗”一个左括号(出栈)。
  • 匹配失败情况:
    1. 扫描到右括号且栈空,则该右括号单身。
    2. 扫描完所有括号后,栈非空,则该左括号单身。
    3. 左右括号不匹配。

#define MaxSize 10 
typedef struct{    
    char data[MaxSize];   
    int top;
}SqStack;
 
void InitStack(SqStack &S);
bool StackEmpty(SqStack &S);
bool Push(SqStack &S, char x);
bool Pop(SqStack &S, char &x);
 
// 判断长度为length的字符串str中的括号是否匹配
bool bracketCheck(char str[], int length){ 
    SqStack S;      
    InitStack(S); 
    // 遍历str    
    for(int i=0; i<length; i++){   
        // 扫描到左括号,入栈     
        if(str[i] == '(' || str[i] == '[' || str[i] == '{'){    
            Push(S, str[i]);        
        }else{              
            // 扫描到右括号且栈空直接返回   
            if(StackEmpty(S))      
                return false;       
            char topElem;          
            // 用topElem接收栈顶元素   
            Pop(S, topElem);          
            // 括号不匹配           
            if(str[i] == ')' && topElem != '(' ) 
                return false;           
            if(str[i] == ']' && topElem != '[' )  
                return false;   
            if(str[i] == '}' && topElem != '{' )   
                return false;              }   
    }  
    // 扫描完毕若栈空则说明字符串str中括号匹配    
    return StackEmpty(S);
}

3.2栈在表达式求值中的应用 


中缀表达式:中缀表达式是一种通用的算术或逻辑公式表示方法,运算符以中缀形式处于操作数的中间。对于计算机来说中缀表达式是很复杂的,因此计算表达式的值时,通常需要先将中缀表达式转换为前缀或后缀表达式,然后再进行求值。
前缀表达式(波兰表达式):前缀表达式的运算符位于两个操作数之前。
后缀表达式(逆波兰表达式):后缀表达式的运算符位于两个操作数之后。

中缀表达式转后缀表达式-手算
步骤1: 确定中缀表达式中各个运算符的运算顺序
步骤2: 选择下一个运算符,按照[左操作数 右操作数 运算符]的方式组合成一个新的操作数
步骤3: 如果还有运算符没被处理,继续步骤2

“左优先”原则: 只要左边的运算符能先计算,就优先算左边的 (保证运算顺序唯一);
 

中缀:A + B - C * D / E + F
       ①   ④   ②   ③   ⑤     
后缀:A B + C D * E / - F +

后缀表达式转中缀的计算—手算:
从左往右扫描,每遇到一个运算符,就让运算符前面最近的两个操作数执行对应的运算,合体为一个操作数

后缀表达式的计算—机算
用栈实现后缀表达式的计算(栈用来存放当前暂时不能确定运算次序的操作数)
步骤1: 从左往后扫描下一个元素,直到处理完所有元素;
步骤2: 若扫描到操作数,则压入栈,并回到步骤1;否则执行步骤3;
步骤3: 若扫描到运算符,则弹出两个栈顶元素,执行相应的运算,运算结果压回栈顶,回到步骤1;
 

中缀表达式转后缀表达式(机算) 
初始化一个栈,用于保存暂时还不能确定运算顺序的运算符从左到右处理各个元素,直到末尾。可能遇到三种情况:
1.遇到操作数:直接加入后缀表达式。
2.遇到界限符:遇到“(”直接入栈;遇到“)”则依次弹出栈内运算符并加入后缀表达式,直到 弹出“(”为止。注意:“(”不加入后缀表达式。
3.遇到运算符:依次弹出栈中优先级高于或等于当前运算符的所有运算符,并加入后缀表达式, 若碰到“(” 或栈空则停止。之后再把当前运算符入栈。
 

#define MaxSize 40 
typedef struct{     
    char data[MaxSize];   
    int top;
}SqStack;
 
typedef struct{  
    char data[MaxSize];  
    int front,rear;
}SqQueue;
 
void InitStack(SqStack &S);
bool StackEmpty(SqStack S);
bool Push(SqStack &S, char x);
bool Pop(SqStack &S, char &x);
void InitQueue(SqQueue &Q);
bool EnQueue(LQueue &Q, char x);
bool DeQueue(LQueue &Q, char &x);
bool QueueEmpty(SqQueue Q);
 
// 判断元素ch是否入栈
int JudgeEnStack(SqStack &S, char ch){
    char tp = S.data[S->top];   
    // 如果ch是a~z则返回-1    
    if(ch >= 'a' && ch <= 'z')   
        return -1;    
    // 如果ch是+、-、*、/且栈顶元素优先级大于等于ch则返回0  
    else if(ch == '+' && (tp == '+' || tp == '-' || tp == '*' || tp == '/'))   
        return 0;     
    else if(ch == '-' && (tp == '+' || tp == '-' || tp == '*' || tp == '/'))   
        return 0;  
    else if(ch == '*' && (tp == '*' || tp == '/'))  
        return 0;    
    else if(ch == '/' && (tp == '*' || tp == '/'))     
        return 0;    
    // 如果ch是右括号则返回2   
    else if(ch == ')')      
        return 2;     
    // 其他情况ch入栈,返回1   
    else return 1;
}
 
// 中缀表达式转后缀表达式
int main(int argc, char const *argv[]) {  
    SqStack S;     
    SqQueue Q;	 
    InitStack(S); 
    InitQueue(Q);  
    char ch;	  
    printf("请输入表达式,以“#”结束:");  
    scanf("%c", &ch);   
    while (ch != '#'){  
        // 当栈为空时     
        if(StackEmpty(&S)){ 
            // 如果输入的是数即a~z,直接入队 
            if(ch >= 'a' && ch <= 'z')               
                EnQueue(Q, ch);      	
            // 如果输入的是运算符,直接入栈    
            else                      
                Puch(S, ch);       
        }else{                
            // 当栈非空时,判断ch是否需要入栈 
            int n = JudgeEnStack(S, ch);     
            // 当输入是数字时直接入队      	
            if(n == -1){        	    
                EnQueue(Q, ch);        
            }else if(n == 0){       
                // 当输入是运算符且运算符优先级不高于栈顶元素时    
                while (1){         
                    // 取栈顶元素入队    
                    char tp;        
                    Pop(S, tp);      
                    EnQueue(Q, tp);         
                    // 再次判断是否需要入栈     
                    n = JudgeEnStack(S, ch);
                    // 当栈头优先级低于输入运算符或者栈头为‘)’时,入栈并跳出循环  
                    if(n != 0){           
                        EnStack(S, ch);           
                        break;              
                    }                   
                }            
            }else if(n == 2){  
                // 当出现‘)’时 将()中间的运算符全部出栈入队   
                while(1){                
                    char tp;                
                    Pop(S, tp);             
                    if(tp == '(')          
                        break;        
                    else            
                        EnQueue(Q, tp);    
                }             
            }else{        
                // 当运算符优先级高于栈顶元素或出现‘(’时直接入栈     
                Push(S, ch);         
            }          
        }         
        scanf("%c", &ch);   
    }     
    // 将最后栈中剩余的运算符出栈入队 
    while (!StackEmpty(S)){	  
        char tp;            
        Pop(S, tp);      
        EnQueue(Q, tp);  
    }      
    // 输出队中元素 
    while (!QueueEmpety(Q)){    
        printf("%c ", DeQueue(Q));  
    }    
    return 0;
}

用栈实现中缀表达式的计算:
     1.初始化两个栈,操作数栈和运算符栈;
     2.若扫描到操作数,压入操作数栈;
     3.若扫描到运算符或界限符,则按照“中缀转后缀”相同的逻辑压入运算符栈(期间也会弹出运算符,每当弹出一个运算符时,就需要再弹出两个操作数栈的栈顶元素并执行相应运算,运算结果再压回操作数栈) 
 

3.3栈在递归中的应用


函数调用的特点:最后被调用的函数最先执行结束(LIFO)

函数调用时,需要用一个栈存储:

  • 调用返回地址
  • 实参
  • 局部变量

递归调用时,函数调用栈称为 “递归工作栈”:

每进入一层递归,就将递归调用所需信息压入栈顶;
每退出一层递归,就从栈顶弹出相应信息;
缺点:太多层递归可能回导致栈溢出;适合用“递归”算法解决:可以把原始问题转换为属性相同,但规模较小的问题
 

 3.4队列的应用

  1. 队列应用:树的层次遍历
  2. 队列应用:图的广度优先遍历
  3. 队列应用:操作系统中多个进程争抢着使用有限的系统资源时,先来先服务算法(First Come First Service)是是一种常用策略。

3.5 特殊矩阵的压缩存储 

 

3.5.1 数组的存储 

1. 一维数组的存储

各数组元素大小相同,且物理上连续存放。设起始地址为LOC,则数组元素a[i]的存放地址 = LOC + i * sizeof(ElemType) (0≤i<10) 

如果询问是第 i个元素(从 1到n ,注意和下标的差别,与下标相差1 ),此时第i 个元素的存放地址为 LOC + (i-1) * sizeof(ElemType) ,此处 1≤i<=10

2. 二维数组的存储 :
  

设二维数组 A[m][n] 按行优先存储, 每个元素占 p 个字节,

  则 Loc(i, j) 的地址为 (i * n + j) * p, 第 i 行前面有0到i-1共 i 行, 每行有 n 个元素, 加上 第 i 行前面 j 个元素,所以地址 为 (i * n + j) * p,

注意如果采用i从0-9,j从0-8此时m= 10, n= 9;

  1. 若 j 从下标 1 开始, 则 Loc(i, j) = (i * n + j - 1) * p

     第 i 行的 第 j 个元素,在第 i 行中 前面只有 j  - 1 个元素,

  2. 若 i 从下标 1开始, 则 Loc(i, j) = ((i - 1) * n + j) * p

  3. 若 i, j 均从 下标 1 开始, 则 Loc(i, j) = ((i - 1) * n + j - 1) * p

若该数组按列优先存储,

  则 Loc(i, j) 为  (j * m + i) * p, 第 j  列前面有 j 列,每列有 m 个元素, 加上 第 j 列前的 i 个元素,所以为 (j * m + i) * p

  1. 若 j 从下标 1 开始, 则 Loc(i, j) = ((j - 1) * m + i) * p;

    因为 第 j 列前面只有  (j - 1) 列

  2. 若 i 从下标 1开始, 则 Loc(i, j) = (j * m + i - 1) * p

    第 i 个元素前面实际上只有 i - 1 个元素

  3. 若 i, j 均从 下标 1 开始, 则 Loc(i, j) = ((j - 1) * m + i - 1) * p

总结:

  按行优先 Loc(i, j) = (i * n + j) * p, 按列优先 Loc(i, j) = (j * m + i) * p, 行从下标1 开始  i 就减一, 列从下标 1 开始 , j 就减一

 

一维数组与二维数组下标的转换(下标是从0开始的)

  • 一维数组转换为二维数组
row = index / m; 
col = index % m;
  • 二维数组转换为一维数组
index =  row * m + col;

3.5.2对称矩阵的压缩存储

         对称矩阵的压缩存储:若n阶方阵中任意一个元素a_{i,j},都有a_{i,j}=a_{j,i}则该矩阵为对称矩阵,对于对称矩阵,只需存储主对角线+下(上)三角区。若按照行优先原则将各元素存入一维数组中,即a_{i,j}存入到数组B[k]中,那么数组B[k]共有\frac{n(n+1)}{2}个元素。

1.行优先且以下三角区主对角线为核心

若想求出对应的a_{ij}(i>=j>=1) 的映射一维数组下标(此处下标是从 0开始的),先计算出a_{ij} 前面有多少个元素(前 i-1行总共有\frac{(i-1+1)(i-1)}{2}=\frac{i(i-1)}{2} 个元素,第 i行有 j个元素),坐标为前面元素个数-1;

若想求出对应的 a_{ij}(i<j)的映射一维数组下标(此处下标是从 0开始的),先计算出 a_{ij} 前面有多少个元素(由于对称矩阵可看作是 i,j进行交换);

对于k,有: 

k = \left\{\begin{matrix} \frac{i(i-1)}{2} + j - 1 &i >= j \\ \frac{j(j-1)}{2} + i - 1 &i < j \end{matrix}\right.

若是求A[i][j]对应的下标k,(即i,j下标是从 0开始的) ,则对应的i,j要+1,

此时对于k,有:

k = \left\{\begin{matrix} \frac{i(i+1)}{2} + j &i >= j \\ \frac{j(j+1)}{2} + i &i < j \end{matrix}\right.

2. 行优先且以上三角区和主对角线为核心

若想求出对应的a_{ij}(1<=i<=j) 的映射一维数组下标(此处下标是从 0开始的),先计算出a_{ij} 前面有多少个元素(前 i-1行总共有\frac{(n-i+2+n)(i-1)}{2}=\frac{(2n-i+2)(i-1)}{2} 个元素(高斯错位相加法),第 i行有 j-i+1个元素),坐标为前面元素个数-1;

若想求出对应的 a_{ij}(i>j)的映射一维数组下标(此处下标是从 0开始的),先计算出 a_{ij} 前面有多少个元素(由于对称矩阵可看作是 i,j进行交换); 

 对于k,有: 

 k = \left\{\begin{matrix} \frac{(i-1)(2n-i+2)}{2} + j - i &i <= j \\ \frac{(j-1)(2n-j+2)}{2} + i - j&i > j \end{matrix}\right.

若是求A[i][j]对应的下标k,(即i,j下标是从 0开始的) ,则对应的i,j要+1,才是实际序号 

3.列优先且以下三角区主对角线为核心

k = \left\{\begin{matrix} \frac{(j-1)(2n-j+2)}{2} + i - j&i >= j \\ \frac{(i-1)(2n-i+2)}{2} + j - i &i < j \end{matrix}\right.

若是求A[i][j]对应的下标k,(即i,j下标是从 0开始的) ,则对应的i,j要+1,才是实际序号  

4. 列优先且以上三角区主对角线为核心

k = \left\{\begin{matrix} \frac{j(j-1)}{2} + i - 1 &i <= j \\ \frac{i(i-1)}{2} + j - 1&i > j \end{matrix}\right.

若是求A[i][j]对应的下标k,(即i,j下标是从 0开始的) ,则对应的i,j要+1,才是实际序号 

3.5.3三角矩阵的压缩存储

 将主对角线+下三角区存入一维数组中,并在最后一个位置存储常量。即a_{i,j}存入到数组B[k]中,那么数组B[k]共有\frac{n(n+1)}{2} + 1个元素。

1.下三角矩阵:

定义:除了主对角线和下三角区,其余的元素都相同。

压缩存储策略:可参考对称矩阵( 1行优先, 3列优先)的存储

若是求A[i][j]对应的下标pos,(即i,j下标是从 0开始的) ,则对应的i,j要+1,才是实际序号  ,若B从下标1开始存,k=pos+1

2.上三角矩阵:

定义:除了主对角线和上三角区,其余的元素都相同。

压缩存储策略:可参考对称矩阵(2 行优先, 4列优先)的存储

若是求A[i][j]对应的下标pos,(即i,j下标是从 0开始的) ,则对应的i,j要+1,才是实际序号  ,若B从下标1开始存,k=pos+1

3.5.4三对角矩阵的压缩存储

三对角矩阵,又称带状矩阵: 当|i-j|>1时,有a_{i,j} =0(1\leqslant i,j\leqslant n)

压缩后的元素个数是 3\times n-2

若想求出对应的 a_{ij}(\left | i-j \right |<=1,i>=1,j>=1)的映射一维数组下标(此处下标是从0开始的),先计算出 a_{i,j}前面有多少个元素(前i-1 行总共有2+3\times(i-2) = 3i-4 个元素,第i 行有j-i+2个元素,其中a_{i,j}在第i行前有j-i+1个,注意:算坐标时该元素个数也要计算,算内存地址时只计算该元素前面的元素个数);从0开始的坐标等于包括该元素在内前面元素个数-1,也等于a_{i,j}前面元素的个数(不包含自己);(只存储带状部分,其余部分无定义,不在一维数组中保存,默认为0)

k = \left\{\begin{matrix} 2i+j-3 &\left | i-j \right | <=1 \\ undefined&\left | i-j \right | >1\end{matrix}\right.

一维数组从1开始存的坐标等于包括该元素在内前面元素个数(只存储带状部分,其余部分无定义,不在一维数组中保存,默认为0)

k = \left\{\begin{matrix} 2i+j-2 &\left | i-j \right | <=1 \\ undefined&\left | i-j \right | >1\end{matrix}\right.

特殊考虑第一行代入公式亦成立,

若一维数组下标从1开始的,需要整体+1,若是求A[i][j]对应的下标k,(即i,j下标是从 0开始的) ,则对应的i,j要+1,才是实际序号  

已知数组下标k,则i=\left \lfloor (k+1)/3+1) \right \rfloor , j=k-2i+3

若是求A[i][j]对应的下标pos,(即i,j下标是从 0开始的) ,则对应的i,j要+1,才是实际序号 ,若B从下标1开始存,k=pos+1hjb  

3.5.5 稀疏矩阵的压缩存储

设矩阵元素个数为m  ,非零元素的个数为n ,其中非零元素极少,即n<<m ,称为稀疏矩阵.只存储非零元素进行空间压缩。

压缩存储策略:

1. 顺序存储:三元组 <行,列,值>

为了运算方便,矩阵的行数,列数,非零元素的个数也同时存储。

 

2. 链式存储:十字链表法 

3.6 汉诺塔问题

3.6.1 汉诺塔问题的规则

假设有 A、B、C 三根柱子。其中在 A 柱子上,从下往上有 N 个从大到小叠放的盘子。我们的目标是,希望用尽可能少的移动次数,把所有的盘子由 A 柱移动到 C 柱。过程中,每次只能移动一个盘子,且在任何时候,大盘子都不可以在小盘子上面。

3.6.2 递归实现

 算法思想:

n个盘子时:

  • 把n-1个圆盘从A经过C移到B上
  • 把第n个圆盘从A移到C上
  • 把n-1个小圆盘经过A从B移到C上

代码实现: 

#include<iostream>
using namespace std;
int times;
void move(char x,char y)
{
	cout<<x<<"-->"<<y<<endl;
    times++;
}
void hanoi(int n,char A,char B,char C)
{	//将n个盘子从A座借助B座移动到C座 
	if(n==1)
		move(A,C);
	else
	{
		hanoi(n-1,A,C,B);
		move(A,C);
		hanoi(n-1,B,A,C);
	}
}
int main()
{
	int n;
    cin>>n;
	hanoi(n,'A','B','C');
    cout << times;
	return 0;
}

3.6.2汉诺塔的非递归实现

用栈来模拟递归过程

#include <iostream>
#include <stack>

using namespace std;
int times;

// 用note来记录一件要解决的事,将n个盘子从a借助b移动到c。
struct note
{
    int n;
    char a;
    char b;
    char c;
};

// 要解决的问题集合,当栈为空即全部已解决。
stack<note> st;

void Move(char A, char C)
{
    cout << A << " -> " << C << endl;
    times++;
}

    void Hanio(int n)
    {
        st.push(note{n, 'a', 'b', 'c'}); // 初始化,此时栈内只有一个大问题,就是n个盘子从a到c.

        while (!st.empty())
        {
            note t = st.top();
            st.pop();
            // 上面两行是取出栈顶问题,进行解决。
            if (t.n == 1) // 如果只有一个盘子,直接移动。
            {
                Move(t.a, t.c);
            }
            else
            {
                // 如果n!=1,将问题分为三个小问题入栈。!!!注意入栈顺序使最先执行的在栈顶。
                st.push(note{t.n - 1, t.b, t.a, t.c});
                st.push(note{1, t.a, t.b, t.c});
                st.push(note{t.n - 1, t.a, t.c, t.b});
            }
        }
    }

    int main()
    {
        int n;
        cin >> n;
        Hanio(n);
        cout << times << endl;
        return 0;
    }

3.6.3 算法分析

在这个过程中,问题由全部 N 个盘子由 A 移动到 C,转变为 N-1 个“合并盘”从 A 移动到 B 再移动 C。新的问题和原问题是完全一致的,但盘子数量由 N 个减少为 N-1 个。如果继续用上面的思想,就能把 N-1 个“合并盘”再度减少为 N-2 个,直到只剩一个。

根据我们第一次的分解可知 H(N)=H(N-1)+1+H(N-1)。

求解递推公式可得H(N)= 2^{N}-1,所以汉诺塔问题的时间复杂度为O(2^n)

在解决汉诺塔问题的过程中,递归栈的深度等于递归调用的层数,即 n。

汉诺塔问题的空间复杂度为 O(n),其中 n 是圆盘的数量。这是因为在解决问题的过程中,我们需要使用一个递归栈来保存每个递归调用的状态。由于递归栈的深度等于递归调用的层数,因此空间复杂度为 O(n)。

 3.7 用栈实现队列

3.7.1 要求

使用栈实现队列的下列操作:

  • push(x) -- 将一个元素放入队列的尾部。
  • pop() -- 从队列首部移除元素。
  • peek() -- 返回队列首部的元素。
  • empty() -- 返回队列是否为空。

说明:

  • 你只能使用标准的栈操作 -- 也就是只有 push to top, peek/pop from top, size, 和 isempty 操作是合法的。
  • 你所使用的语言也许不支持栈。你可以使用 list 或者 deque(双端队列)来模拟一个栈,只要是标准的栈操作即可。
  • 假设所有操作都是有效的 (例如,一个空的队列不会调用 pop 或者 peek 操作)。

3.7.2 算法思想

需要两个栈一个输入栈,一个输出栈

  • push(x) -- 在push数据的时候,只要数据放进输入栈就好,
  • pop() -- 但在pop的时候,操作就复杂一些,输出栈如果为空,就把进栈数据全部导入进来(注意是全部导入),再从出栈弹出数据,如果输出栈不为空,则直接从出栈弹出数据就可以了。
  • peek() -- pop() 和 peek()两个函数功能类似,代码实现上也是类似的,只不过不需要弹出,可以调用pop弹出后再压入.
  • empty() -- 最后如何判断队列为空呢?如果进栈和出栈都为空的话,说明模拟的队列为空了。
class MyQueue {
public:
    stack<int> stIn;
    stack<int> stOut;
    /** Initialize your data structure here. */
    MyQueue() {

    }
    /** Push element x to the back of queue. */
    void push(int x) {
        stIn.push(x);
    }

    /** Removes the element from in front of queue and returns that element. */
    int pop() {
        // 只有当stOut为空的时候,再从stIn里导入数据(导入stIn全部数据)
        if (stOut.empty()) {
            // 从stIn导入数据直到stIn为空
            while(!stIn.empty()) {
                stOut.push(stIn.top());
                stIn.pop();
            }
        }
        int result = stOut.top();
        stOut.pop();
        return result;
    }

    /** Get the front element. */
    int peek() {
        int res = this->pop(); // 直接使用已有的pop函数
        stOut.push(res); // 因为pop函数弹出了元素res,所以再添加回去
        return res;
    }

    /** Returns whether the queue is empty. */
    bool empty() {
        return stIn.empty() && stOut.empty();
    }
};
  • 时间复杂度: push和empty为O(1), pop和peek为O(n)
  • 空间复杂度: O(n)

 3.8 用队列实现栈

3.8.1 要求

使用队列实现栈的下列操作:

  • push(x) -- 元素 x 入栈
  • pop() -- 移除栈顶元素
  • top() -- 获取栈顶元素
  • empty() -- 返回栈是否为空

注意:

  • 你只能使用队列的基本操作-- 也就是 push to back, peek/pop from front, size, 和 isempty 这些操作是合法的。
  • 你所使用的语言也许不支持队列。 你可以使用 list 或者 deque(双端队列)来模拟一个队列 , 只要是标准的队列操作即可。
  • 你可以假设所有操作都是有效的(例如, 对一个空的栈不会调用 pop 或者 top 操作)。

3.8.2 算法思想

最简单的两个队列模拟:

用两个队列que1和que2实现队列的功能,que2其实完全就是一个备份的作用,把que1最后一个元素以外的元素都备份到que2,然后弹出最后面的元素,再把其他元素从que2导回que1。

class MyStack {
public:
    queue<int> que1;
    queue<int> que2; // 辅助队列,用来备份
    /** Initialize your data structure here. */
    MyStack() {

    }

    /** Push element x onto stack. */
    void push(int x) {
        que1.push(x);
    }

    /** Removes the element on top of the stack and returns that element. */
    int pop() {
        int size = que1.size();
        size--;
        while (size--) { // 将que1 导入que2,但要留下最后一个元素
            que2.push(que1.front());
            que1.pop();
        }

        int result = que1.front(); // 留下的最后一个元素就是要返回的值
        que1.pop();
        que1 = que2;            // 再将que2赋值给que1
        while (!que2.empty()) { // 清空que2
            que2.pop();
        }
        return result;
    }

    /** Get the top element. */
    int top() {
        return que1.back();
    }

    /** Returns whether the stack is empty. */
    bool empty() {
        return que1.empty();
    }
};
  • 时间复杂度: pop为O(n),其他为O(1)
  • 空间复杂度: O(n)

3.8.3 优化 —— 只用一个队列

一个队列在模拟栈弹出元素的时候只要将队列头部的元素(除了最后一个元素外) 重新添加到队列尾部,此时再去弹出元素就是栈的顺序了。

class MyStack {
public:
    queue<int> que;
    /** Initialize your data structure here. */
    MyStack() {

    }
    /** Push element x onto stack. */
    void push(int x) {
        que.push(x);
    }
    /** Removes the element on top of the stack and returns that element. */
    int pop() {
        int size = que.size();
        size--;
        while (size--) { // 将队列头部的元素(除了最后一个元素外) 重新添加到队列尾部
            que.push(que.front());
            que.pop();
        }
        int result = que.front(); // 此时弹出的元素顺序就是栈的顺序了
        que.pop();
        return result;
    }

    /** Get the top element. */
    int top() {
        return que.back();
    }

    /** Returns whether the stack is empty. */
    bool empty() {
        return que.empty();
    }
};
  • 时间复杂度: pop为O(n),其他为O(1)
  • 空间复杂度: O(n)
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值