1079 延迟的回文数
题目链接
给定一个 k+1 位的正整数 N,写成 ak⋯a1a0 的形式,其中对所有 i 有 0≤ai<10 且 ak>0。N 被称为一个回文数,当且仅当对所有 i 有 ai=ak−i。零也被定义为一个回文数。
非回文数也可以通过一系列操作变出回文数。首先将该数字逆转,再将逆转数与该数相加,如果和还不是一个回文数,就重复这个逆转再相加的操作,直到一个回文数出现。如果一个非回文数可以变出回文数,就称这个数为延迟的回文数
给定任意一个正整数,本题要求你找到其变出的那个回文数。
输入格式:
输入在一行中给出一个不超过1000位的正整数。
输出格式:
对给定的整数,一行一行输出其变出回文数的过程。每行格式如下
A + B = C
其中 A 是原始的数字,B 是 A 的逆转数,C 是它们的和。A 从输入的整数开始。重复操作直到 C 在 10 步以内变成回文数,这时在一行中输出 C is a palindromic number.;或者如果 10 步都没能得到回文数,最后就在一行中输出 Not found in 10 iterations.。
输入样例 1:
97152
输出样例 1:
97152 + 25179 = 122331
122331 + 133221 = 255552
255552 is a palindromic number.
输入样例 2:
196
输出样例 2:
196 + 691 = 887
887 + 788 = 1675
1675 + 5761 = 7436
7436 + 6347 = 13783
13783 + 38731 = 52514
52514 + 41525 = 94039
94039 + 93049 = 187088
187088 + 880781 = 1067869
1067869 + 9687601 = 10755470
10755470 + 07455701 = 18211171
Not found in 10 iterations.
【分析】
话不多说,直接上代码解释
#include<stdio.h>
#include<string.h>
int judge(char a[])//判断是不是回文数
{
int f = 1, s;
s = strlen(a);
for (int i = 0; i<s / 2; i++)
{
if (a[i] != a[s - i - 1])
{
f = 0;
break;
}
}
return f;
}
void nixu(char a[])///求一个数组的逆序,直接可以用一个数组自身就行,先将两个数字相加求和再用和减去
{
int s = strlen(a);
for (int i = 0; i < strlen(a) / 2; i++)
{
a[i] = a[i] + a[s - i - 1];
a[s - i - 1] = a[i] - a[s - i - 1];
a[i] = a[i] - a[s - i - 1];
}
}
int main()
{
int i, j;
int jinwei = 0, p, q, s;
char a[1050], b[1050];
gets(a);
s = strlen(a) - 1;
a[s + 1] = '\0';
if (judge(a))printf("%s is a palindromic number.", a);
else
{
for (i = 0; i < 10; i++)
{
strcpy(b, a);//先把原字符串保存一下
nixu(a);
printf("%s + %s = ", b, a);
for (j = 0; j <= s; j++)
{
p = a[j] - '0';
q = b[j] - '0';
p += q + jinwei;
jinwei = 0;
if (p >= 10)
{
jinwei = 1;
a[j] = p - 10 + '0';
}
else a[j] = p + '0';
}
if (jinwei == 1)//说明当前位数不够,还有进位值,要往前
{
a[++s] = '1';
a[s + 1] = '\0';
jinwei = 0;
}
nixu(a);
printf("%s\n", a);
if (judge(a))
{
printf("%s is a palindromic number.", a);
break;
}
}
if (i == 10)printf("Not found in 10 iterations.");
}
return 0;
}