1079 延迟的回文数

1079 延迟的回文数

题目链接

给定一个 k+1 位的正整数 N,写成 ak⋯a1a0 的形式,其中对所有 i 有 0≤ai<10 且 ak>0。N 被称为一个回文数,当且仅当对所有 i 有 ai=ak−i。零也被定义为一个回文数。
非回文数也可以通过一系列操作变出回文数。首先将该数字逆转,再将逆转数与该数相加,如果和还不是一个回文数,就重复这个逆转再相加的操作,直到一个回文数出现。如果一个非回文数可以变出回文数,就称这个数为延迟的回文数
给定任意一个正整数,本题要求你找到其变出的那个回文数。
输入格式:
输入在一行中给出一个不超过1000位的正整数。
输出格式:
对给定的整数,一行一行输出其变出回文数的过程。每行格式如下
A + B = C
其中 A 是原始的数字,B 是 A 的逆转数,C 是它们的和。A 从输入的整数开始。重复操作直到 C 在 10 步以内变成回文数,这时在一行中输出 C is a palindromic number.;或者如果 10 步都没能得到回文数,最后就在一行中输出 Not found in 10 iterations.。
输入样例 1:
97152
输出样例 1:
97152 + 25179 = 122331
122331 + 133221 = 255552
255552 is a palindromic number.
输入样例 2:
196
输出样例 2:
196 + 691 = 887
887 + 788 = 1675
1675 + 5761 = 7436
7436 + 6347 = 13783
13783 + 38731 = 52514
52514 + 41525 = 94039
94039 + 93049 = 187088
187088 + 880781 = 1067869
1067869 + 9687601 = 10755470
10755470 + 07455701 = 18211171
Not found in 10 iterations.

【分析】

话不多说,直接上代码解释

#include<stdio.h>
#include<string.h>

int judge(char a[])//判断是不是回文数
{
	int f = 1, s;
	s = strlen(a);
	for (int i = 0; i<s / 2; i++)
	{
		if (a[i] != a[s - i - 1])
		{
			f = 0;
			break;
		}
	}
	return f;
}

void nixu(char a[])///求一个数组的逆序,直接可以用一个数组自身就行,先将两个数字相加求和再用和减去
{
	int s = strlen(a);

	for (int i = 0; i < strlen(a) / 2; i++)
	{
		a[i] = a[i] + a[s - i - 1];
		a[s - i - 1] = a[i] - a[s - i - 1];
		a[i] = a[i] - a[s - i - 1];
	}
}

int main()
{
	int i, j;
	int jinwei = 0, p, q, s;
	char a[1050], b[1050];
	gets(a);
	s = strlen(a) - 1;
	a[s + 1] = '\0';
	if (judge(a))printf("%s is a palindromic number.", a);

	else
	{
		for (i = 0; i < 10; i++)
		{
			strcpy(b, a);//先把原字符串保存一下
			
			nixu(a);

			printf("%s + %s = ", b, a);

			for (j = 0; j <= s; j++)
			{
				p = a[j] - '0';
				q = b[j] - '0';
				p += q + jinwei;
				jinwei = 0;

				if (p >= 10)
				{
					jinwei = 1;
					a[j] = p - 10 + '0';
				}
				else a[j] = p + '0';
			}

			if (jinwei == 1)//说明当前位数不够,还有进位值,要往前
			{
				a[++s] = '1';
				a[s + 1] = '\0';
				jinwei = 0;
			}

			nixu(a);
			printf("%s\n", a);

			if (judge(a))
			{
				printf("%s is a palindromic number.", a);
				break;
			}
		}

		if (i == 10)printf("Not found in 10 iterations.");
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值