《战场车辆及部件损毁识别与评估的神经网络迁移训练》
一、战场车辆损毁评估的重要性与挑战
在战场上,车辆及部件损毁识别与评估至关重要。首先,准确的评估能迅速判定损伤部位与程序,确定现场可否修复、修复时间以及修复后的作战能力,为制定抢修方案提供依据,从而为战场抢修工作的顺利实施奠定基础。例如,在车辆装备战场损伤等级评估方法的研究中,通过分析损伤程度、残存功能状态、抢修时间等因素,能够为装备的分类和抢修提供有力支持。
然而,战场车辆损毁评估面临着诸多挑战。一方面,战场数据复杂多样。一辆受损车辆可能同时有多个部位受损,一个部位也可能同时发生多处损伤,这使得评估难度大大增加。另一方面,战场环境多变,如不同的地形、气候条件等,都会对车辆的损毁情况产生影响。例如在俄乌战场中,乌军的 MaxxPro 防地雷反伏击车在复杂的战场环境下触雷损毁,凸显了战场环境的复杂性和危险性。此外,现代战争中,武器装备的种类和威力不断增加,也给车辆及部件损毁识别与评估带来了新的挑战。例如在装甲装备战场损伤评估分析中,需要考虑多种弹种对坦克造成的损伤,包括对机动功能和火力功能的影响,这进一步增加了评估的复杂性。
二、相关技术与方法
(一)神经网络在损毁评估中的应用
神经网络在车辆装备战场损伤等级评估中发挥着重要作用。例如基于深度卷积神经网络的小样本车型分类方法,在智能弹药或无人机进行军用车辆识别等场景中具有应用价值。通过设计多尺度特征提取卷积神经网络,结合自适应学习率等方法,在小样本车型分类数据集上实现了最高 92% 的分类准确率。在车辆损伤级别确定方面,基于神经网络的车辆损伤级别的确定方法,通过获取车辆损伤图像ÿ