《大数据与人工智能:提升数据质量与数量的利器》

一、大数据与人工智能的融合趋势

在这里插入图片描述

在当今数字化时代,大数据和人工智能技术的重要性愈发凸显。大数据为人工智能提供了丰富的训练资源,正如我们所看到的,机器学习算法依赖于大量的数据进行训练和优化。只有拥有足够多样和庞大的数据集,才能训练出准确率高、泛化能力强的模型。
据统计,人类历史上 90% 的数据都是在过去几年产生的,50% 的数据都是短短两年所生成的。这一惊人的数据增长速度,为人工智能的发展提供了坚实的基础。
大数据与人工智能的融合是必然趋势。一方面,大数据拓展了人工智能的应用场景。在不同行业和领域,海量的数据不断产生,这些数据包含了丰富的信息和价值。人工智能通过对这些数据的分析和挖掘,能够发现新的规律、趋势和知识,进而应用于决策支持、智能推荐、风险管理等多个方面。
另一方面,大数据促进了人工智能技术的创新和进步。在处理大数据的过程中,需要不断改进和优化算法,以提高处理效率和准确性。这些技术创新反过来又推动了人工智能的发展,形成了良性循环。
例如,在互联网行业,大数据与人工智能的结合创造了更多的商业价值。在电商领域,利用人工智能可以实现个性化推荐,提高用户的购物体验和购买转化率。同时,通过对大数据的分析,可以优化库存管理、物流配送等环节,提高企业的运营效率。
总之,大数据和人工智能的融合趋势不可阻挡,它们将共同推动各行业的数字化转型和智能化升级。

二、大数据增加数据数量的方法

在这里插入图片描述

(一)不同途径的数据增量

在数据库操作方面,对于小型数据表(当前数据少于 10W,未来数据少于 100W),可以每天全量数据存入一个分区内。而对于大表(数据不存在隔日更新),如打点(埋点)表、日志表,每天增量数据存入一个分区内。对于大表(数据存在隔日更新),可以采用一些特定的方案,如使用 T1 表存储上一账期全量数据,T2 表根据 update 获取当前账期新插入和新更新的数据,再通过 row_number () OVER (PARTITION BY COL1 ORDER BY COL2) 和 T3 表去除重复数据。
此外,利用编程语言 Python 处理 Excel 表格也可以实现数据的增加。例如,可以使用 Python 的 pandas 和 openpyxl 库来读取、修改和追加 Excel 文件中的数据。具体步骤包括安装必要的库、导入库、读取 Excel 文件、准备数据、追加数据和保存文件。通过将新数据转换为 DataFrame 并使用 pd.concat 方法追加到原有的数据框中,可以实现数据的有效增加。

(二)数据增强的多样方法

单样本的数据增强方法有几何变换类和颜色变换类。几何变换类包括对图像进行翻转、旋转、移位、裁剪、变形、缩放等操作。例如,左右翻转可以使用 torchvision.transforms.RandomHorizontalFlip ();上下翻转可以使用 torchvision.transforms.RandomVerticalFlip ();随机剪裁可以使用 torchvision.transforms.RandomResizedCrop ((height, width), scale=, ratio=)。颜色变换类常见的包括噪声、模糊、颜色变换、擦除、填充等。比如,随机改变亮度、对比度、饱和度、色调可以使用 torchvision.transforms.ColorJitte

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

空云风语

人工智能,深度学习,神经网络

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值