《Ollama与DeepSeek》:此文为AI自动生成

  

《Ollama与DeepSeek》

启动并运行大型语言模型。

macOS 的

下载

窗户

下载

Linux的

<span style="background-color:var(--bgColor-muted, var(--color-canvas-subtle))"><span style="color:#1f2328"><span style="color:var(--fgColor-default, var(--color-fg-default))"><span style="background-color:var(--bgColor-muted, var(--color-canvas-subtle))"><code>curl -fsSL https://ollama.com/install.sh | sh
</code></span></span></span></span>

手动安装说明

码头工人

Docker Hub 上提供了官方的 Ollama Docker 镜像ollama/ollama

图书馆

社区

快速入门

要运行 Llama 并与 Llama 聊天 3.2

<span style="background-color:var(--bgColor-muted, var(--color-canvas-subtle))"><span style="color:#1f2328"><span style="color:var(--fgColor-default, var(--color-fg-default))"><span style="background-color:var(--bgColor-muted, var(--color-canvas-subtle))"><code>ollama run llama3.2
</code></span></span></span></span>

模型库

Ollama 支持 ollama.com/library 上可用的模型列表

以下是一些可以下载的示例模型:

参数 大小 下载
羊驼 3.3 70 字节 43GB ollama run llama3.3
羊驼 3.2 3B 2.0千兆字节(GB) ollama run llama3.2
羊驼 3.2 1乙 1.3GB ollama run llama3.2:1b
Llama 3.2 愿景 11B 7.9GB ollama run llama3.2-vision
Llama 3.2 愿景 90B 55GB ollama run llama3.2-vision:90b
羊驼 3.1 8B 4.7GB ollama run llama3.1
羊驼 3.1 405B 系列 231GB ollama run llama3.1:405b
Phi 4 14B 9.1吉字节 ollama run phi4
Phi 3 迷你 3.8 字节 2.3GB ollama run phi3
杰玛 2 2B 1.6GB ollama run gemma2:2b
杰玛 2 9B 5.5GB (千兆字节) ollama run gemma2
杰玛 2 27B 16GB ollama run gemma2:27b
米斯特拉尔 7B 4.1千兆字节(GB) ollama run mistral
月梦 2 1.4乙 829兆字节(MB) ollama run moondream
神经聊天 7B 4.1千兆字节(GB) ollama run neural-chat
7B 4.1千兆字节(GB) ollama run starling-lm
代码 Llama 7B 3.8千兆字节(GB) ollama run codellama
Llama 2 7B 3.8千兆字节(GB) ollama run llama2-uncensored
拉瓦 7B 4.5GB ollama run llava
太阳的 10.7 字节 6.1吉字节 ollama run solar

注意

您应该至少有 8 GB 的 RAM 来运行 7B 型号,16 GB 的 RAM 来运行 13B 的型号,32 GB 的 RAM 来运行 33B 型号。

自定义模型

从 GGUF 导入

Ollama 支持在 Modelfile 中导入 GGUF 模型:

  1. 创建一个名为 , 的文件,其中包含要导入的模型的本地文件路径的指令。ModelfileFROM

    <span style="background-color:var(--bgColor-muted, var(--color-canvas-subtle))"><span style="color:var(--fgColor-default, var(--color-fg-default))"><span style="background-color:var(--bgColor-muted, var(--color-canvas-subtle))"><code>FROM ./vicuna-33b.Q4_0.gguf
    </code></span></span></span>
  2. 在 Ollama 中创建模型

    <span style="background-color:var(--bgColor-muted, var(--color-canvas-subtle))"><span style="color:var(--fgColor-default, var(--color-fg-default))"><span style="background-color:var(--bgColor-muted, var(--color-canvas-subtle))"><code>ollama create example -f Modelfile
    </code></span></span></span>
  3. 运行模型

    <span style="background-color:var(--bgColor-muted, var(--color-canvas-subtle))"><span style="color:var(--fgColor-default, var(--color-fg-default))"><span style="background-color:var(--bgColor-muted, var(--color-canvas-subtle))"><code>ollama run example
    </code></span></span></span>

从 Safetensor 导入

请参阅 导入模型 以了解更多信息。

自定义提示

Ollama 库中的模型可以通过提示进行自定义。例如,要自定义模型:llama3.2

<span style="background-color:var(--bgColor-muted, var(--color-canvas-subtle))"><span style="color:#1f2328"><span style="color:var(--fgColor-default, var(--color-fg-default))"><span style="background-color:var(--bgColor-muted, var(--color-canvas-subtle))"><code>ollama pull llama3.2
</code></span></span></span></span>

创建一个 :Modelfile

<span style="background-color:var(--bgColor-muted, var(--color-canvas-subtle))"><span style="color:#1f2328"><span style="color:var(--fgColor-default, var(--color-fg-default))"><span style="background-color:var(--bgColor-muted, var(--color-canvas-subtle))"><code>FROM llama3.2

# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1

# set the system message
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""
</code></span></span></span></span>

接下来,创建并运行模型:

<span style="background-color:var(--bgColor-muted, var(--color-canvas-subtle))"><span style="color:#1f2328"><span style="color:var(--fgColor-default, var(--color-fg-default))"><span style="background-color:var(--bgColor-muted, var(--color-canvas-subtle))"><code>ollama create mario -f ./Modelfile
ollama run mario
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

空云风语

人工智能,深度学习,神经网络

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值