《Ollama与DeepSeek》
启动并运行大型语言模型。
macOS 的
窗户
Linux的
<span style="background-color:var(--bgColor-muted, var(--color-canvas-subtle))"><span style="color:#1f2328"><span style="color:var(--fgColor-default, var(--color-fg-default))"><span style="background-color:var(--bgColor-muted, var(--color-canvas-subtle))"><code>curl -fsSL https://ollama.com/install.sh | sh
</code></span></span></span></span>
码头工人
Docker Hub 上提供了官方的 Ollama Docker 镜像。ollama/ollama
图书馆
社区
快速入门
<span style="background-color:var(--bgColor-muted, var(--color-canvas-subtle))"><span style="color:#1f2328"><span style="color:var(--fgColor-default, var(--color-fg-default))"><span style="background-color:var(--bgColor-muted, var(--color-canvas-subtle))"><code>ollama run llama3.2
</code></span></span></span></span>
模型库
Ollama 支持 ollama.com/library 上可用的模型列表
以下是一些可以下载的示例模型:
型 | 参数 | 大小 | 下载 |
---|---|---|---|
羊驼 3.3 | 70 字节 | 43GB | ollama run llama3.3 |
羊驼 3.2 | 3B | 2.0千兆字节(GB) | ollama run llama3.2 |
羊驼 3.2 | 1乙 | 1.3GB | ollama run llama3.2:1b |
Llama 3.2 愿景 | 11B | 7.9GB | ollama run llama3.2-vision |
Llama 3.2 愿景 | 90B | 55GB | ollama run llama3.2-vision:90b |
羊驼 3.1 | 8B | 4.7GB | ollama run llama3.1 |
羊驼 3.1 | 405B 系列 | 231GB | ollama run llama3.1:405b |
Phi 4 | 14B | 9.1吉字节 | ollama run phi4 |
Phi 3 迷你 | 3.8 字节 | 2.3GB | ollama run phi3 |
杰玛 2 | 2B | 1.6GB | ollama run gemma2:2b |
杰玛 2 | 9B | 5.5GB (千兆字节) | ollama run gemma2 |
杰玛 2 | 27B | 16GB | ollama run gemma2:27b |
米斯特拉尔 | 7B | 4.1千兆字节(GB) | ollama run mistral |
月梦 2 | 1.4乙 | 829兆字节(MB) | ollama run moondream |
神经聊天 | 7B | 4.1千兆字节(GB) | ollama run neural-chat |
椋 | 7B | 4.1千兆字节(GB) | ollama run starling-lm |
代码 Llama | 7B | 3.8千兆字节(GB) | ollama run codellama |
Llama 2 | 7B | 3.8千兆字节(GB) | ollama run llama2-uncensored |
拉瓦 | 7B | 4.5GB | ollama run llava |
太阳的 | 10.7 字节 | 6.1吉字节 | ollama run solar |
注意
您应该至少有 8 GB 的 RAM 来运行 7B 型号,16 GB 的 RAM 来运行 13B 的型号,32 GB 的 RAM 来运行 33B 型号。
自定义模型
从 GGUF 导入
Ollama 支持在 Modelfile 中导入 GGUF 模型:
-
创建一个名为 , 的文件,其中包含要导入的模型的本地文件路径的指令。
Modelfile
FROM
<span style="background-color:var(--bgColor-muted, var(--color-canvas-subtle))"><span style="color:var(--fgColor-default, var(--color-fg-default))"><span style="background-color:var(--bgColor-muted, var(--color-canvas-subtle))"><code>FROM ./vicuna-33b.Q4_0.gguf </code></span></span></span>
-
在 Ollama 中创建模型
<span style="background-color:var(--bgColor-muted, var(--color-canvas-subtle))"><span style="color:var(--fgColor-default, var(--color-fg-default))"><span style="background-color:var(--bgColor-muted, var(--color-canvas-subtle))"><code>ollama create example -f Modelfile </code></span></span></span>
-
运行模型
<span style="background-color:var(--bgColor-muted, var(--color-canvas-subtle))"><span style="color:var(--fgColor-default, var(--color-fg-default))"><span style="background-color:var(--bgColor-muted, var(--color-canvas-subtle))"><code>ollama run example </code></span></span></span>
从 Safetensor 导入
请参阅 导入模型 以了解更多信息。
自定义提示
Ollama 库中的模型可以通过提示进行自定义。例如,要自定义模型:llama3.2
<span style="background-color:var(--bgColor-muted, var(--color-canvas-subtle))"><span style="color:#1f2328"><span style="color:var(--fgColor-default, var(--color-fg-default))"><span style="background-color:var(--bgColor-muted, var(--color-canvas-subtle))"><code>ollama pull llama3.2
</code></span></span></span></span>
创建一个 :Modelfile
<span style="background-color:var(--bgColor-muted, var(--color-canvas-subtle))"><span style="color:#1f2328"><span style="color:var(--fgColor-default, var(--color-fg-default))"><span style="background-color:var(--bgColor-muted, var(--color-canvas-subtle))"><code>FROM llama3.2
# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1
# set the system message
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""
</code></span></span></span></span>
接下来,创建并运行模型:
<span style="background-color:var(--bgColor-muted, var(--color-canvas-subtle))"><span style="color:#1f2328"><span style="color:var(--fgColor-default, var(--color-fg-default))"><span style="background-color:var(--bgColor-muted, var(--color-canvas-subtle))"><code>ollama create mario -f ./Modelfile
ollama run mario