package com.wyebd.DaXingWeb.Tools;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
/**
* 必知的八中排序
* @author Bing
*
*/
public class ObjectSort {
public void printArray(int[] a){
for(int i:a){
System.out.print(i+" ");
}
}
/**
* 直接插入
* 基本思想:在要排序的一组数中,假设前面(n-1)[n>=2] 个数已经是排好顺序的,
* 现在要把第n个数插到前面的有序数中,使得这n个数也是排好顺序的。如此反复循环,直到全部排好顺序。
* @param a
*/
public void inertSort(int[]a){
int temp=-9999;
for(int i=0;i<a.length;i++){
temp=a[i];
int j=i-1;
for(;j>=0&&temp<a[j];j--){
a[j+1]=a[j]; //将大于temp的值整体后移一个单位
}
a[j+1]=temp;
}
printArray(a);
}
/**
* 希尔排序
* 基本思想:算法先将要排序的一组数按某个增量d(n/2,n为要排序数的个数)分成若干组,
* 每组中记录的下标相差d.对每组中全部元素进行直接插入排序,然后再用一个较小的增量(d/2)对它进行分组,
* 在每组中再进行直接插入排序。当增量减到1时,进行直接插入排序后,排序完成
* @param a
*/
public void shellSort(int[]a){
double d1=a.length;
int temp=-9999;
while(true){
d1=Math.ceil(d1/2);
int d= (int)d1;
for(int x=0;x<d;x++){
for(int i=x+d;i<a.length;i=i+d){
int j;
temp=a[i];
for(j=i-d;j>=0&&temp<a[j];j=j-d){
a[j+d]=a[j];//大值往后排 正序
}
// for(j=i-d;j>=0&&temp>a[j];j=j-d){
// a[j+d]=a[j];//小值往后排 倒序
// }
a[j+d]=temp;
}
}
if(d==1) break;
}
printArray(a);
}
/**
* 简单选择排序
* 基本思想:在要排序的一组数中,选出最小的一个数与第一个位置的数交换;
* 然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止
* @param a
*/
public void selectSort(int[]a){
int p=0;
for(int i=0;i<a.length;i++){
int j;
p=i;
int temp=a[i];
for(j=i+1;j<a.length;j++){
if(a[j]<temp){
temp=a[j];
p=j;
}
}
a[p]=a[i];
a[i]=temp;
}
printArray(a);
}
/**
* 堆排序
* 堆排序是一种树形选择排序,是对直接选择排序的有效改进
* 堆的定义如下:具有n个元素的序列(h1,h2,...,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1) (i=1,2,...,n/2)时称之为堆。
* 在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。
* 完全二叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个堆,这时堆的根节点的数最大。
* 然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。
* 从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。
* 一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数
* @param a
*/
public void heapSort(int[]a){
System.out.println("开始排序");
int arrayLength=a.length;
for(int i=0;i<arrayLength-1;i++){//循环建堆
buildMaxHeap(a,arrayLength-1-i);//建堆
swap(a,0,arrayLength-1-i);//交换堆项和最后一元素
System.out.println(Arrays.toString(a));
}
// System.out.println(Arrays.toString(a));
// printArray(a);
}
public void swap(int[] data,int i,int j){
int temp=data[i];
data[i]=data[j];
data[j]=temp;
}
public void buildMaxHeap(int []data,int lastIndex){ //对data数组从0到lastIndex建大顶堆
for(int i=(lastIndex-1)/2;i>=0;i--){//从lastIndex处节点(最后一个节点)的父节点开始
int k=i;//k保存正在判断的节点
while(2*k+1<=lastIndex){//如果当前k节点的子节点存在
int biggerIndex=2*k+1;//k节点的左子节点的索引
if(biggerIndex<lastIndex){//如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在
if(data[biggerIndex]<data[biggerIndex+1]){//若果右子节点的值较大
biggerIndex++; //biggerIndex总是记录较大子节点的索引
}
}
if(data[k]<data[biggerIndex]){//如果k节点的值小于其较大的子节点的值
swap(data,k,biggerIndex);
k=biggerIndex;//将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值
}else{
break;
}
}
}
}
/**
* 冒泡排序
* 基本思想:在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。
* 即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换
* @param a
*/
public void bubbleSort(int[]a){
int temp=-9999;
for(int i=0;i<a.length-1;i++){
for(int j=0;j<a.length-1-i;j++){
if(a[j]>a[j+1]){
temp=a[j];
a[j]=a[j+1];
a[j+1]=temp;
}
}
}
printArray(a);
}
/**
* 快速排序
* 基本思想:选择一个基准元素,通常选择第一个元素或者最后一个元素,通过一趟扫描,将待排序列分成两部分,一部分比基准元素小,一部分大于等于基准元素,此时基准元素在其排好序后的正确位置,然后再用同样的方法递归地排序划分的两部分。
* @param a
*/
public void quickSort(int[]a,int low,int high){
gsort(a,low,high);
printArray(a);
}
public void gsort(int[]a,int low,int high){
int i,j,k;
if(low<high){
i=low;
j=high;
k=a[i];
while(i<j){
while(i<j&&a[j]>k){
j--;
}
if(i<j){
a[i]=a[j];
i++;
}
while(i<j&&a[i]<k){
i++;
}
if(i<j){
a[j]=a[i];
j--;
}
}
a[i]=k;
gsort(a,low,i-1);
gsort(a,i+1,high);
}
}
/**
* 归并排序
* 基本思想:归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,
* 即把待排序序列分为若干个子序列,每个子序列是有序的,然后再把有序子序列合并为整体有序序列
* @param a
*/
public void merginSort(int[]a,int left,int right){
if(left<right){
int mid=(left+right)>>>1;
merginSort(a,left,mid);
merginSort(a,mid+1,right);
sort(a,left,mid,right);
}
}
public void sort(int[]data,int left,int center,int right){
int[] tmpArr=new int[data.length];
int mid=center+1;
int third=left; //third记录中间数组的索引
int tmp=left;
while(left<=center&&mid<=right){
if(data[left]<=data[mid]){ //从两个数组中取出最小的放入中间数组
tmpArr[third++]=data[left++];
}else{
tmpArr[third++]=data[mid++];
}
}
while(mid<=right){ //剩余部分依次放入中间数组
tmpArr[third++]=data[mid++];
}
while(left<=center){ //剩余部分依次放入中间数组
tmpArr[third++]=data[left++];
}
while(tmp<=right){ //将中间数组中的内容复制回原数组
data[tmp]=tmpArr[tmp++];
}
System.out.println(Arrays.toString(data));
}
/**
* 基数排序
* 基本思想:将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列
*/
public void radixSort(int[]data){
int max= data[0];
for(int i=1;i<data.length;i++){ //首先确定排序的趟数;
if(data[i]>max){
max=data[i];
}
}
int times=0;
while(max>0){ //判断位数;
max/=10;
times++;
}
List<ArrayList>queue=new ArrayList<ArrayList>(); //建立10个队列;
for(int i=0;i<10;i++){
ArrayList<Integer> queue1 = new ArrayList<Integer>();
queue.add(queue1);
}
for(int i=0;i<times;i++){ //进行times次分配和收集
for(int j=0;j<data.length;j++){//分配数组元素
int x=data[j]%(int)Math.pow(10, i+1)/(int)Math.pow(10, i); //得到数字times+1位数
ArrayList<Integer> queue2=queue.get(x);
queue2.add(data[j]);
queue.set(x, queue2);
}
int count=0;//元素计数器
for(int k=0;k<10;k++){//收集队列元素
while(queue.get(k).size()>0){
ArrayList<Integer> queue3=queue.get(k);
data[count]=queue3.get(0);
queue3.remove(0);
count++;
}
}
}
printArray(data);
}
public static void main(String [] args){
int[]a={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,121,109,23,34,15,35,25,53,51};
ObjectSort os=new ObjectSort();
// os.inertSort(a);
// os.shellSort(a);
// os.selectSort(a);
// os.heapSort(a);
// os.bubbleSort(a);
// os.quickSort(a, 0, a.length-1);
// os.merginSort(a,0,a.length-1);
// os.radixSort(a);
System.out.println("==/=="+a[22]/10+"==%=="+a[22]%10+"===i+1位==a[22]%(int)Math.pow(10, i+1)/(int)Math.pow(10, i)=="+a[22]%(int)Math.pow(10, 2+1)/(int)Math.pow(10, 2));
}
}