9:矩阵归零消减序列和
总时间限制: 1000ms 内存限制: 65536kB
描述
给定一个nn的矩阵(3 <= n <= 100,元素的值都是非负整数)。通过(n-1)次实施下述过程,可把这个矩阵转换成一个11的矩阵。每次的过程如下:
首先对矩阵进行行归零:即对每一行上的所有元素,都在其原来值的基础上减去该行上的最小值,保证相减后的值仍然是非负整数,且这一行上至少有一个元素的值为0。
接着对矩阵进行列归零:即对每一列上的所有元素,都在其原来值的基础上减去该列上的最小值,保证相减后的值仍然是非负整数,且这一列上至少有一个元素的值为0。
然后对矩阵进行消减:即把nn矩阵的第二行和第二列删除,使之转换为一个(n-1)(n-1)的矩阵。
下一次过程,对生成的(n-1)(n-1)矩阵实施上述过程。显然,经过(n-1)次上述过程, nn的矩阵会被转换为一个1*1的矩阵。
请求出每次消减前位于第二行第二列的元素的值。
输入
第一行是一个整数n。
接下来n行,每行有n个正整数,描述了整个矩阵。相邻两个整数间用单个空格分隔。
输出
输出为n行,每行上的整数为对应矩阵归零消减过程中,每次消减前位于第二行第二列的元素的值。
样例输入
3
1 2 3
2 3 4
3 4 5
样例输出
3
0
0
代码
#include "pch.h"
#include <iostream>
#include<stdio.h>
#include<math.h>
using namespace std;
int main()
{
int n;
cin >> n;
//输入数据
int num[100][100];
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
cin >> num[i][j];
}
}
int count; count = n;//来进行大循环
while (count)
{
cout << num[1][1] << endl;
//行归零
int min;//储存每行最小的数
for (int i = 0; i < count; i++)
{
min = num[i][0];
for (int j = 0; j < count; j++)
{
if (num[i][j] < min)
min = num[i][j];
}
//做减法
if (min!= 0)
{
for (int j = 0; j < count; j++)
num[i][j] -= min;
}
}
//列归零
int colmin;//储存每列最小的数
for (int j = 0; j < count; j++)
{
colmin = num[0][j];
for (int i = 0; i < count; i++)
{
if (num[i][j] < colmin)
colmin = num[i][j];
}
//做减法
if (colmin != 0)
{
for (int i= 0; i < count; i++)
num[i][j] -= colmin;
}
}
//矩阵消减
for (int j = 0; j < count; j++)
for (int i = 2; i < count; i++)
num[i - 1][j] = num[i][j];
for (int i = 0; i < count; i++)
for (int j = 2; j < count; j++)
num[i][j - 1] = num[i][j];
//行数列数减一
count--;
}
return 0;
}