GaussDB分布式数据库中分布键、索引与分区协同设计方法

摘要 

随着企业级应用数据量的爆炸式增长,传统单机数据库在性能、扩展性与高可用性方面面临严峻挑战。GaussDB作为华为推出的高性能、高可用、高安全的分布式关系型数据库,通过将数据分布到多个计算节点上,实现了水平扩展能力。然而,其性能表现高度依赖于合理的数据分布策略。其中,分部键(Distribution Key)、索引(Index)与分区(Partitioning)的设计是影响系统吞吐量、查询延迟与负载均衡的核心因素。本文深入探讨GaussDB中三者的设计原理与最佳实践,结合真实业务场景,提出一套系统化的协同设计方法论,旨在为开发者与架构师提供可落地的指导方案,最大化发挥GaussDB的分布式优势。

关键词:

GaussDB;分布式数据库;分部键;索引设计;分区策略;数据分布;查询优化

1. 引言

GaussDB基于Shared-Nothing架构,数据被切分并存储在多个DN(Data Node)节点上,CN(Coordinator Node)负责SQL解析、执行计划生成与结果汇总。在这种架构下,数据的物理分布直接决定了查询的执行路径。不当的分部键选择可能导致严重的数据倾斜或跨节点JOIN操作,引发“木桶效应”;不合理的索引设计会增加写入开销并降低查询效率;而分区策略若与访问模式不匹配,则无法有效缩小扫描范围。

本文将系统性地分析分部键、索引与分区在GaussDB中的作用机制,并结合实际开发需求,提出设计原则、评估方法与优化策略。

2. GaussDB核心组件与数据分布机制

 2.1 组件概述

 

2.2 分布式数据分布方式

2.2.1 分布方式概述

分布式集群采用水平分表的方式,将业务数据表的元

/行打散存储到各个节点内。

通过全并行数据处理技术和快速定位到数据存储位置

等手段可极大提升数据库性能

3. 分部键(Distribution Key)设计方法

3.1分部键的概述

分部键决定了数据在DN节点间的分布方式,是分布式数据库性能的基石。数据均匀分布,可以防止数据在部分DN上集中分布,从而导致因存储倾斜造成集群有效容量下降。通过选择合适的分布列,可以避免数据倾斜。GaussDB分布式数据库的表中,应必须指定合适的分布键,如果不指定分部键,系统会优先以表的主键作为分部键,如果该表没有主键则会默认以第一个字段作为分部键,因此可能诱发数据倾斜的问题。

GaussDB目前提供REPLICATION、HASH、Range和List四种表分布策略。REPLICATION分布会在每个节点保留一份相同的完整的数据表。HASH分布会根据所提供的分布键值将表数据分布到多个节点中。范围(Range)和列表(List)根据分布列的取值落入满足一定范围或者具体值的对应目标节点。

表的分布方式及使用场景如下:

3.2 分布方式设计原则

3.2.1对于系统配置表、数据字典表等数据规模较小,且插入更新十分低频的表,要求采用REPLICATION分布。此种分布方式如果数据量较大会造成空间膨胀,DML性能下降的负面影响。

3.2.2数据量较大,更新频率较高的表,必须进行数据分片,要求采用HASH分布策略,分布键必须是主键中的一个或多个字段。

3.2.3 用户需要自定义分布规则的场景,可以使用Range和List分布策略。

例如:以地市或者国家作为list分部键

--定义一个表,使用LIST分布。 CREATE TABLE warehouse_d4 ( W_WAREHOUSE_SK            INTEGER               NOT NULL, W_WAREHOUSE_ID            CHAR(16)              NOT NULL, W_WAREHOUSE_NAME          VARCHAR(20)                   , W_WAREHOUSE_SQ_FT         INTEGER                       , W_STREET_NUMBER           CHAR(10)                      , W_STREET_NAME             VARCHAR(60)                   , W_STREET_TYPE             CHAR(15)                      , W_SUITE_NUMBER            CHAR(10)                      ,

W_CITY                    VARCHAR(60)                   ,

W_COUNTY                  VARCHAR(30)                   ,

W_STATE                   CHAR(2)                       ,

W_ZIP                     CHAR(10)                      , W_COUNTRY                 VARCHAR(20)                   , W_GMT_OFFSET              DECIMAL(5,2) )DISTRIBUTE BY LIST(W_COUNTRY) (     SLICE s1 VALUES ('USA'DATANODE dn1,     SLICE s2 VALUES ('CANADA'DATANODE dn2,     SLICE s3 VALUES ('UK'DATANODE dn3,     SLICE s4 VALUES (DEFAULTDATANODE dn4 );

例如:以部门ID或者仓库ID作为range分部键

--定义一个表,使用RANGE分布。

CREATE TABLE warehouse_d3 ( W_WAREHOUSE_SK            INTEGER               NOT NULL, W_WAREHOUSE_ID            CHAR(16)              NOT NULL, W_WAREHOUSE_NAME          VARCHAR(20)                   , W_WAREHOUSE_SQ_FT         INTEGER                       , W_STREET_NUMBER           CHAR(10)                      , W_STREET_NAME             VARCHAR(60)                   , W_STREET_TYPE             CHAR(15)                      , W_SUITE_NUMBER            CHAR(10)                      ,

W_CITY                    VARCHAR(60)                   ,

W_COUNTY                  VARCHAR(30)                   ,

W_STATE                   CHAR(2)                       ,

W_ZIP                     CHAR(10)                      , W_COUNTRY                 VARCHAR(20)                   , W_GMT_OFFSET              DECIMAL(5,2) )DISTRIBUTE BY RANGE(W_WAREHOUSE_ID) (    SLICE s1 VALUES LESS THAN (10DATANODE dn1,    SLICE s2 VALUES LESS THAN (20DATANODE dn2,    SLICE s3 VALUES LESS THAN (30DATANODE dn3,    SLICE s4 VALUES LESS THAN (MAXVALUEDATANODE dn4 );

3.3 HASH分布方式分布键设计原则

3.3.1 应该比较离散,以便数据能在各个DN上均匀分布。避免数据倾斜所产生的I/O负载集中在部分DN上,影响整体查询性能

3.3.2 在满足第一条原则的情况下,尽量不要选取在查询中存在常量过滤条件的字段作为分布键

3.3.3 在满足前两条原则的情况,尽量选择查询中在关联条件的列为分布键当关联条件作为分布键时,join任务的相关数据都分布在DN本地,将极大减少DN之间的数据流动代价。

3.3.4 分布键不建议超过3列,列数过多将带来较高的计算开销

3.3.5 分布键使用的列长度不宜超过128,过长会带来较高的计算开销

3.3.6 分布键值一旦插入不允许更新(UPDATE),如需更新需删除后插入

3.4 实际设计步骤

3.4.1 分析业务查询模式:

统计高频查询的WHERE/JOIN字段。

3.4.2 评估候选列基数:

SELECT COUNT(DISTINCT col) FROM table;

3.4.3 模拟分布:

对候选键计算哈希分布,预估倾斜度。

3.4.4 权衡写入与查询:

避免为优化查询牺牲写入性能。

4. 分区(Partitioning)设计方法

4.1 分区概述

数据库表分区是一种数据库优化的技术,可以将大表物理上分割成多个较小的部分以提高查询性能。每个部分称为一个分区,这些分区可以存储在不同的存储设备上。

优点:

1)提高查询性能:通过减少扫描的数据量使查询性能有显著地提升。

2)优化存储:通过把不同分区存放到不同的存储介质上,来平衡性能和成本。

3)增加可维护性:分区表的维护操作(数据清理、重建索引)可以从分区的粒度来进行,减少对整个系统的影响。

4)提高并发性:分区表可以提高并发性,因为多个分区可以并行处理。例如,多个查询可以同时访问不同的分区,而不会相互干扰。

缺点:

1)内存资源占用:分区表使用内存大致为(分区数 * 3 / 1024)MB,当分区数太多导致内存不足时,会间接导致性能急剧下降。

2)分区策略复杂性:制定和实施合适的分区策略需要技术知识和经验。如果分区策略选择不当,可能会导致数据分布不均衡,进一步影响性能。

3)备份恢复的复杂性:虽然可以单独备份和恢复分区,但这也意味着需要更细致的备份策略和管理工作。

4.2 分区类型与适用场景

4.2.1提高查询性能:表的数据量大,且具有某些特性的数据在其中某个场景中经常会用到,可以通过减少查询时扫描数据量来提高性能。如:经常以月、季度、年为单位做分析的表。

4.2.2平衡性能和成本:表的数据量过大,需要将冷数据(不常访问的数据)移动到低成本存储,而将热数据(频繁访问的数据)保留在高性能存储上。

4.2.3大数据量表管理:表的数据量过大,需要在多个存储介质上存储的场景。

4.3 设计策略

4.3.1 范围分区表:将数据基于范围映射到不同的分区。范围由创建分区表时指定的分区键决定。常用于时间序列数据,例如按日期、月份或年份进行分区。

4.3.2 列表分区表:根据分区键的值将数据分配到不同的分区,分区中包含的键值由创建分区表时指定。适用于分类明确的数据,例如订单状态、设备类型或地区代码。

4.3.3 哈希分区表:将数据根据哈希算法映射到不同分区中,分区个数在创建分区表时指定。适用于需要均匀分布数据以平衡负载的场景。

4.3.4分区与分部键协同

理想情况:分部键与分区键一致(如 user_id 既做分部键又做哈希分区键),实现双层过滤。

让分布键(Distribute Key)和分区键(Partition Key)保持一致,或者至少让它们协同设计,是一种非常推荐的最佳实践。这样做可以最大化查询性能,特别是对于大规模数据的关联(JOIN)和聚合操作,尽量减少节点间数据重分布,当分区键和分布键不一致的情况,有跨节点的情况下,应优先考虑分布键。

分布键(DISTRIBUTE BY HASH):决定数据在节点间如何分布,目标是避免跨节点JOIN。

分区键(PARTITION BY RANGE/LIST):决定数据在节点内如何组织,目标是高效查询和管理。

5. 索引设计方法

5.1 索引概述

索引是数据库中用于加速数据检索的一种数据结构,通过创建指向表中数据的指针,使得数据库可以快速定位和访问特定的行,而无需扫描整个表。索引类似于书籍的目录,帮助用户快速定位所需要的内容,从而显著提高查询性能。虽然索引可以提高数据访问速度,但同时也增加了插入、更新、和删除操作的处理时间。所以是否要为表创建索引、索引建立在哪些字段上,是创建索引前必须要考虑的问题。

5.2 索引类型选择

5.2.1按索引列数将索引分类

单列索引:仅在一个列上建立索引

多列索引:多列索引又称为组合索引。一个索引中包含多个列,只有在查询条件中使用了创建索引时的第一个字段,索引才会被使用

5.2.2 按索引使用方法将索引分类:

全文索引:提供了查询可读性文档的能力,并且通过查询相关度将结果进行排序

唯一索引:列值或列值组合唯一的索引。建表时会在主键上自动建立唯一索引

函数索引(表达式索引):建立在函数基础之上的索引

分区索引:在表的分区上独立创建的索引,在删除某个分区时不影响该表的其他分区索引的使用

全局二级索引:分布式集群,允许用户定义与基表分布不一致的索引,从而实现基表非分布列查询的单节点计划和基表非分布列上的unique/主键约束

5.2.3 根据索引数据的分布方式以及对查询、维护操作的不同,分为全局索引和本地索引

本地索引 (Local Index):是与表的分区(或分布)结构对齐的索引。每个表分区(或每个节点上的数据)都有一个独立的索引片段(Index Partition),这些片段共同构成完整的索引。

优点

维护成本低,支持高效的分区管理。

索引损坏只影响单个分区,风险隔离。

适合大表分区场景。

缺点

跨多个分区的范围查询可能需要访问多个索引片段。

全局索引 (Global Index):是独立于表的分区结构的单一索引。它跨越所有表分区(或所有节点),形成一个统一的索引结构。

优点

对非分区键的查询性能好。

索引结构单一,查询路径简单。

缺点

分区维护操作代价高(需重建索引)。

索引损坏可能影响整个表的查询。

在分布式环境下,全局索引的维护和查询可能涉及跨节点操作。

5.2.4 按照数据库引擎不同分为:

ASTORE存储引擎支持的索引类型:btree(行存表缺省值)、gin、gist。USTORE存储引擎支持的索引类型:ubtree、ugin。

取值范围:

btree:btree索引使用一种类似于B+树的结构来存储数据的键值,通过这种结构能够快速的查找索引。btree适合支持比较查询以及范围查询。

ubtree:仅供ustore表使用的多版本btree索引,索引页面上包含事务信息,并能自主回收页面。ubtree索引默认开启insertpt功能。

ugin:通用倒排索引,一种仅供Ustore表使用的GIN索引。

gin:通用倒排索引,可以处理包含多个键的值(例如数组)。

gist:适用于几何和地理等多维数据类型和集合数据类型。目前支持的数据类型包括box、point、poly、circle、tsvector、tsquery和range。

5.3 设计原则

5.3.1经常执行查询的字段作为索引。

5.3.2在连接条件上创建索引,对于存在多字段连接的查询,建议在这些字段上建立组合索引  

5.3.3 where子句的过滤条件字段上(尤其是范围条件)。

5.3.4在经常出现在order by、group by和distinct后的字段

5.3.5 分区表索引分为LOCAL索引与GLOBAL索引,LOCAL索引与某个具体分区绑定,而GLOBAL索引则对应整个分区表

5.3.6 基表为HASH分布时,若创建不包含基表分布键的主键或唯一索引,需要使用全局二级索引(CREATE GLOBAL INDEX),若创建包含基表分布键的主键或唯一索引,需要使用普通索引(CREATE INDEX),单DN部署形式下,使用全局二级索引或者普通索引均可创建成功;当基表为除HASH分布以外的其他分布形式时,主键或唯一索引只能使用普通索引(CREATE INDEX),即索引键必须包含基表分布键

5.3.7 索引自身也占用存储空间、消耗计算资源,创建过多的索引将对数据库性能造成负面影响(尤其影响数据导入的性能,建议在数据导入后再建索引)。

5.3.8 如果基表是HASH/RANGE/LIST分布,则创建唯一索引时必须包含基表的分布键,且不能含有表达式

5.3.9 如果表达式索引中调用的是用户自定义函数,按照表Owner权限执行表达式索引函数

5.3.10 不支持XML类型数据作为普通索引、UNIQUE索引、GLOBAL索引、LOCAL索引、部分索引

5.3.11 UGIN索引目前仅支持Ustore存储引擎,仅支持单列索引

5.3.12 GIN、GiST索引仅支持Astore存储引擎

5.3.13 由于B-tree索引有结构性约束,需要保证单个页面有至少三个索引元组,因此有最长索引长度的约束。B-tree和UB-tree索引单个索引元组最长长度为2696字节,但是由于Ustore的UB-tree索引中有事务信息,所以其单个索引元组实际的最长长度为2688字节。用户对超过这个长度的字段创建索引会报错,同样地,从Astore表迁移到Ustore表后对应的索引也存在创建失败的风险

5.3.14 组合索引最左匹配原则:如果查询条件包含了组合索引的一列或者多列,那么组合索引的最左侧开始的连续列需要与查询条件匹配

5.4 索引失效的情况

5.4.1 使用 NOT IN、!=、NOT EXISTS 等否定条件

5.4.2 使用 OR 连接条件且部分列无索引

5.4.3 在索引列上使用 LIKE 且以通配符开头

5.4.4 数据类型不匹配导致隐式转换

5.4.5 复合索引未遵循最左前缀原则

5.4.6查询结果占全表数据比例过高

5.4.7 IS NULL / IS NOT NULL 查询(特定情况)

5.4.8 统计信息过期或缺失(ANALYZE TABLE table1;)

6. 协同设计方法论

6.1 设计流程图

业务需求分析

    ↓

识别核心表与访问模式(读/写比例、高频查询)

    ↓

选择分部键:优先JOIN字段、高频过滤列、高基数

    ↓

设计分区策略:按时间/地域等维度拆分大表

    ↓

添加索引:基于查询条件创建覆盖索引,避免回表

    ↓

压测验证:检查数据倾斜、执行计划、QPS/延迟

    ↓

迭代优化

6.2 典型场景案例

6.2.1场景:电商平台订单系统

表结构:orders(order_id, user_id, shop_id, create_time, status, amount)

查询模式:

  - 用户查订单:WHERE user_id = ?

  - 商家查订单:WHERE shop_id = ?

  - 运营按时间统计:WHERE create_time BETWEEN ? AND ?

6.2.2设计决策:

  1. 分部键:user_id(用户查询最频繁)

  2. 分区键:RANGE(create_time) 按时间分区

  3. 索引:

     - idx_shop_time:(shop_id, create_time) 支持商家查询

     - idx_status_time:(status, create_time) 支持状态统计

  4. JOIN优化:订单与用户表均以 user_id 为分部键,JOIN高效。

7. 结论

在GaussDB分布式数据库中,分部键、索引与分区的设计并非孤立行为,而是一个需要协同优化的系统工程。分部键决定数据的物理分布与查询的并行效率,分区策略管理数据的生命周期与访问局部性,索引则加速特定访问路径。实际开发中,应以业务查询模式为核心,遵循高基数、高频率、低倾斜的原则选择分部键;采用时间或业务维度进行分区;并基于查询条件构建最小化、覆盖式的索引。通过压测验证与持续监控,可构建出高性能、可扩展的分布式数据架构。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值