笔记
zhenglit
dont ever underestimate a heart of championshi.
展开
-
机器学习评估指标汇总
原文:https://www.cnblogs.com/zongfa/p/9431807.html在使用机器学习算法过程中,针对不同的问题需要不用的模型评估标准,这里统一汇总。主要以两大类分类与回归分别阐述。一、分类问题1、混淆矩阵混淆矩阵是监督学习中的一种可视化工具,主要用于比较分类结果和实例的真实信息。矩阵中的每一行代表实例的预测类别,每一列代表实例的真实类别。 真正(True Positive , TP):被模型预测为正的正样本。假正(False Positiv转载 2021-03-10 16:26:31 · 775 阅读 · 0 评论 -
关于AB实验样本累积的记录
当达到最小样本量的时候,我们能否再积累两天样本,使得P值发生改变,然后选择改变后的P值作为我们的结论?不能!背景:在做AB实验的时候我们根据MDE计算出了最小样本量,根据最小样本量我们规划了一个7天的实验,但是7天后我们评估发现p-value>0.05,这个时候我们能否再积累两天样本使得p-value<0.05的时候再做结论?不能,我们是“在保证犯第一类错误的概率<0.05的前提下,尽量的使得power越大越好”,虽然继续积累样本量可以保证power越来越大,但是我们就没办法保证原创 2021-01-14 21:07:34 · 444 阅读 · 0 评论 -
横坐标分类纵坐标数值画折线图
横坐标是分类/日期变量,纵坐标是数值变量,画折线图例1:> datedata date value class1 2020-01-01 0.39121506 a2 2020-01-02 0.80494396 a3 2020-01-03 0.58351189 a4 2020-01-04 0.05941928 a5 2020-01-05 0.07531910 a6 2020-01-06 0.80780271原创 2020-06-11 23:24:21 · 3950 阅读 · 0 评论 -
2020-06-11
横坐标是分类/日期变量,纵坐标是数值变量,画折线图例1:datedatadate value class1 2020-01-01 0.39121506 a2 2020-01-02 0.80494396 a3 2020-01-03 0.58351189 a4 2020-01-04 0.05941928 a5 2020-01-05 0.07531910 a6 2020-01-06 0.80780271 a7 2020-原创 2020-06-11 18:23:45 · 215 阅读 · 0 评论