C++高精度算法

C++高精度算法

由于受到计算机硬件等因素的限制,计算机计算结果的精度也受到一定的限制,即使用Extended或comp数据类型,计算结果也最多能精确到20位,
另一方面,计算机所能表示的数的范围也受到一定的限制,如实数所能处理的最大值为1.7*1038,在计算N!时,当N=34时,计算结果就超过这个范围,无法计算。

高精度的读入和存储

如果要处理的数据超过了计算机允许的显示精度范围,读入数据时不能用数值型变量读入数据,如果读入的数据位数小于或等于255位,可用字符串变量读入数据,如果超过255位,则要用数组变量逐位读入。如果用字符串变量读入数据时,读入数据后通常将它各位数字分离,用数组将各位数字存储。我们把数92345678919放在数组a中,在数组a 中的位置如下:


读入和输出

void read(int a[]){
   
	string s;
	cin>>s;
	a[0]=s.size();
	for(int i=0;i<a[0];i++){
   
		a[a[0]-i]=s[i]-'0';
	}
}
void write(int a[]){
   
	for(int i=a[0];i>=1;i--){
   
		cout<<a[i];
	}
	cout<<endl;
}


高精度加法

输入两个正整数,求它们的和。

分析:
输入两个数到两个变量中,然后用赋值语句求它们的和,输出。但是,我们知道,在C++语言中任何数据类型都有一定的表示范围。而当两个被加数很大时,上述算法显然不能求出精确解,因此我们需要寻求另外一种方法。在读小学时,我们做加法都采用竖式方法,如图1。 这样,我们方便写出两个整数相加的算法。

在这里插入图片描述

如果我们用数组A、B分别存储加数和被加数,用数组C存储结果。则上例有A[1]=6,A[2]=5, A[3]=8,B[1]=5,B[2]=5,B[3]=2,C[4]=1,C[3]=1,C[2]=1,C[1]=1,两数相加如图2所示。

void add(int a[],int b[]){
   
	memset(c,0,sizeof(c));
	int len=a[0]>b[0]?a[0]:b[0];
	int g=0;
	for(int i=1;i<=len;i++){
   
		c[i]=a[i]+b[i]+g;
		g=c[i]/10;
		c[i]%=10;
	}
	if(g!=0)c[++len]=g;
	c[0]=len;
}

#include<iostream>
#include<string>
#include<cstring>
using namespace std;
int a[1000],b[1000],c[1000];
void read(int a[])
void write(int a[])void add(int a[],int b[])int main(){
   
	read(a);
	read(b);
	add(a,b);
	write(c);
}

高精度减法

bool check(int a[],int b[]){
   
	if(a[0]>b[0])return false;
	if(a[0]<b
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值