C++高精度算法
由于受到计算机硬件等因素的限制,计算机计算结果的精度也受到一定的限制,即使用Extended或comp数据类型,计算结果也最多能精确到20位,
另一方面,计算机所能表示的数的范围也受到一定的限制,如实数所能处理的最大值为1.7*1038,在计算N!时,当N=34时,计算结果就超过这个范围,无法计算。
高精度的读入和存储
如果要处理的数据超过了计算机允许的显示精度范围,读入数据时不能用数值型变量读入数据,如果读入的数据位数小于或等于255位,可用字符串变量读入数据,如果超过255位,则要用数组变量逐位读入。如果用字符串变量读入数据时,读入数据后通常将它各位数字分离,用数组将各位数字存储。我们把数92345678919放在数组a中,在数组a 中的位置如下:
读入和输出
void read(int a[]){
string s;
cin>>s;
a[0]=s.size();
for(int i=0;i<a[0];i++){
a[a[0]-i]=s[i]-'0';
}
}
void write(int a[]){
for(int i=a[0];i>=1;i--){
cout<<a[i];
}
cout<<endl;
}
高精度加法
输入两个正整数,求它们的和。
分析:
输入两个数到两个变量中,然后用赋值语句求它们的和,输出。但是,我们知道,在C++语言中任何数据类型都有一定的表示范围。而当两个被加数很大时,上述算法显然不能求出精确解,因此我们需要寻求另外一种方法。在读小学时,我们做加法都采用竖式方法,如图1。 这样,我们方便写出两个整数相加的算法。
如果我们用数组A、B分别存储加数和被加数,用数组C存储结果。则上例有A[1]=6,A[2]=5, A[3]=8,B[1]=5,B[2]=5,B[3]=2,C[4]=1,C[3]=1,C[2]=1,C[1]=1,两数相加如图2所示。
void add(int a[],int b[]){
memset(c,0,sizeof(c));
int len=a[0]>b[0]?a[0]:b[0];
int g=0;
for(int i=1;i<=len;i++){
c[i]=a[i]+b[i]+g;
g=c[i]/10;
c[i]%=10;
}
if(g!=0)c[++len]=g;
c[0]=len;
}
#include<iostream>
#include<string>
#include<cstring>
using namespace std;
int a[1000],b[1000],c[1000];
void read(int a[])
void write(int a[]);
void add(int a[],int b[]);
int main(){
read(a);
read(b);
add(a,b);
write(c);
}
高精度减法
bool check(int a[],int b[]){
if(a[0]>b[0])return false;
if(a[0]<b