package 选择排序;
import java.util.Arrays;
/**
* 堆排序【不稳定】
*
* 基本思想:堆排序是一种树形选择排序,是对直接选择排序的有效改进。 堆的定义下:具有n个元素的序列
* (h1,h2,...,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1)
* (i=1,2,...,n/2)时称之为堆。 在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。 完全二
* 叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。
*
* 思想:初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个 堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。
* 然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对 它们作交换,最后得到有n个节点的有序序列。
* 从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。
* 所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。
*/
public class 堆排序 {
public static void main(String[] args) {
int[] a = { 49, 38, 65, 97, 76, 13, 27};
int arrayLength = a.length;
// 循环建堆
for (int i = 0; i < arrayLength - 1; i++) {
// 建堆
buildMaxHeap(a, arrayLength - 1 - i);
// 交换堆顶和最后一个元素
swap(a, 0, arrayLength - 1 - i);
System.out.println(Arrays.toString(a));
}
}
// 对data数组从0到lastIndex建大顶堆
public static void buildMaxHeap(int[] data, int lastIndex) {
// 从lastIndex处节点(最后一个节点)的父节点开始
for (int i = (lastIndex - 1) / 2; i >= 0; i--) {
// k保存正在判断的节点
int k = i;
// 如果当前k节点的子节点存在
while (k * 2 + 1 <= lastIndex) {
// k节点的左子节点的索引
int biggerIndex = 2 * k + 1;
// 如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在
if (biggerIndex < lastIndex) {
// 如果右子节点的值较大
if (data[biggerIndex] < data[biggerIndex + 1]) {
// biggerIndex总是记录较大子节点的索引
biggerIndex++;
}
}
// 如果k节点的值小于其较大的子节点的值
if (data[k] < data[biggerIndex]) {
// 交换他们
swap(data, k, biggerIndex);
// 将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值
k = biggerIndex;
} else {
break;
}
}
}
}
// 交换
private static void swap(int[] data, int i, int j) {
int temp = data[i];
data[i] = data[j];
data[j] = temp;
}
}
运行结果如下:
[27, 76, 65, 38, 49, 13, 97]
[13, 49, 65, 38, 27, 76, 97]
[27, 49, 13, 38, 65, 76, 97]
[27, 38, 13, 49, 65, 76, 97]
[13, 27, 38, 49, 65, 76, 97]
[13, 27, 38, 49, 65, 76, 97]