机器学习
FlySahami
这个作者很懒,什么都没留下…
展开
-
EM算法及应用概述
EM算法是一种迭代算法,每次迭代由两步组成:E步和M步,E步一般求响应度,M步一般求模型参数值。EM用于含有隐变量的概率模型参数的极大似然估计,常用于混合高斯模型、隐马尔科夫模型等的参数估计。 作为迭代算法,必须要考虑EM算法的收敛性。这里需要简要提及其推导,目标是极大化观测数据Y关于参数theta的极大似然函数。基于log函数是一个凹函数,基于Jensen不等式,我们找到对数似然函数的一个...原创 2018-04-30 21:16:27 · 1351 阅读 · 0 评论 -
extract_imgBand_patches
(1)问题介绍 目的:提取序列图像的patch 函数和模块: import tensorflow as tf import numpy as np import pickle tf.extract_image_patches() np.expand_dims(imgData[:,:,d], axis=0) 数据: band1 = [[[[x * n + y + 1] for y ...原创 2018-11-25 17:27:18 · 336 阅读 · 0 评论