本文为senlie原创,转载请保留此地址:http://blog.csdn.net/zhengsenlie
Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.
Note: You may not slant the container.
题意:二维坐标系里有 n 个点 (i, ai), ai >= 0,从 (i, ai)到(i, 0)划竖线,共有 n 条竖线。
找出两条竖线,使得它们构成的矩形的面积最大,矩形的高取决于最短的竖线。
思路:贪心
从首尾两个下标head 和trail 处开始扫描,用一个变量 maxArea 保持当前最大的矩形面积。
如果head 指向的竖线短于 trail 的,则右移 head
否则左移 trail
计算面积,更新 maxArea
复杂度:时间O(n),空间O(1)
int maxArea(vector<int> &height){
if(height.size() < 2) return 0;
int maxArea = min(height.front(), height.back()) * ( height.size() - 1);
for(int head = 0, trail = height.size() - 1; head < trail; ){
if(height[head] < height[trail]) head++;
else trail--;
int newArea = min(height[head], height[trail]) * (trail - head);
maxArea = max(maxArea, newArea);
}
return maxArea;
}