- 博客(49)
- 资源 (6)
- 收藏
- 关注
原创 在 JCLRNT 模型训练中遇到了损失函数始终为nan的问题
摘要:JCLRNT模型训练中出现损失函数为nan的问题,主要源于学习率过高、丢弃率过大、数值计算不稳定或数据异常。解决方案包括:1)调整config.json配置,降低学习率至1e-4,减少丢弃率至0.1,改用GELU激活函数;2)优化NT-Xent损失计算,添加归一化和数值裁剪;3)实施梯度裁剪和数据预处理。这些措施可有效解决90%的nan问题,确保训练稳定后再逐步调优参数。核心原则是优先保证数值稳定性,再追求模型性能优化。
2026-01-20 09:52:50
777
原创 快速地图匹配(FMM)的开源工具与代码示例
本文介绍了快速地图匹配(FMM)的开源工具与实现方法。主要内容包括:1)常用开源工具如FMM官方库(C++/Python)、OSMnx(Python)和PostGIS;2)基于OSMnx的轻量化Python实现示例,展示从加载路网、轨迹匹配到可视化的完整流程;3)重点区分了快速地图匹配(用于矫正真实GPS轨迹)与快速行进法(用于生成虚拟路径)的不同应用场景。示例代码通过将漂移轨迹点投影到最近道路边实现简单匹配,并提供了直观的可视化对比效果。
2026-01-11 09:22:00
914
原创 FMM(快速地图匹配)和FMM(快速行进法)的区别
摘要:快速行进法(FMM)和快速地图匹配(FMM)虽然缩写相同,但二者截然不同。快速行进法用于在无地图条件下生成最小代价路径,常用于机器人路径规划;而快速地图匹配则是基于电子地图路网数据,将GPS轨迹点匹配到实际道路上以消除漂移。前者通过波前扩散求解最优路径,后者采用隐马尔可夫模型矫正轨迹。简单区分:快速行进法生成轨迹,快速地图匹配矫正轨迹。
2026-01-11 09:21:09
233
原创 快速地图匹配(FMM)在轨迹可视化中的核心应用
【摘要】快速地图匹配(FMM)技术解决了GPS轨迹可视化中的关键痛点,通过将原始轨迹精准匹配到路网,消除漂移和噪点。其核心流程包括:1)准备GPS轨迹和路网数据;2)运用HMM等算法进行道路匹配;3)对匹配轨迹进行平滑和分层可视化渲染;4)支持交互式轨迹回放和属性查询。该技术广泛应用于交通监控、运动轨迹分析和物流可视化等领域,有效提升轨迹数据的合理性和可视化效果,为基于位置的服务提供可靠的数据基础。
2026-01-11 09:20:12
404
原创 FMM(快速行进法)在轨迹可视化方面的应用
FMM(快速行进法)是一种基于水平集的数值计算方法,通过波前扩散求解静态哈密顿-雅可比方程,获取空间点到起点的最短距离和最优路径。该方法适用于机器人路径规划、GIS轨迹可视化等场景,通过构建代价场、FMM求解和轨迹渲染三个步骤实现可视化。FMM优势在于轨迹最优性和平滑性,但对代价场敏感且难以处理动态场景。实现时需注意轨迹平滑优化和大规模场景处理,可通过插值算法和多分辨率离散化提升效果。该方法特别适合静态最优轨迹的可视化需求,为路径规划提供直观有效的解决方案。
2026-01-11 09:18:40
1106
原创 fmm(快速地图匹配)实践:Boost header not found解决方案
fmm项目Boost头文件缺失问题解决方案 在fmm项目构建过程中,CMake报错提示找不到Boost头文件boost/system.hpp。该错误通常是由于Boost库未正确安装或路径配置不当导致。 解决方案步骤: 检查Boost安装路径和文件是否存在 在CMake命令中显式指定Boost包含路径(-DBOOST_INCLUDEDIR) 确认Boost版本匹配(1.72.0) 检查并清除相关环境变量 必要时修改CMakeLists.txt文件 通过以上步骤可解决Boost头文件缺失问题,确保项目正常构建。
2026-01-06 19:50:03
524
原创 fmm(快速地图匹配)实践:Unknown toolset: vcunk的解决方案
在使用fmm进行快速地图匹配实践时,遇到Boost构建系统无法识别Visual Studio编译工具集的错误"Unknown toolset: vcunk"。解决方案包括:1)在VS开发者命令提示符中运行bootstrap.bat并指定msvc工具集;2)确保VS和C++工具集正确安装;3)手动指定工具集版本如msvc-14.2;4)使用VS2017命令提示符;5)检查环境变量;6)考虑使用vcpkg或Conda安装预编译的Boost库。建议优先尝试在VS命令提示符中指定工具集参数进行构
2026-01-06 19:43:44
980
原创 fmm(快速地图匹配)实践:Failed to build Boost.Build engine.报错解决方案
摘要: 在Windows环境下使用fmm工具时,遇到Boost.Build引擎构建失败的问题("Failed to build Boost.Build engine")。解决方案包括:1) 查看bootstrap.log获取详细错误信息;2) 检查Visual Studio、MSBuild和Python环境变量配置;3) 确保C++编译器已安装;4) 清理临时文件后重新运行bootstrap.bat;5) 手动指定编译器路径;6) 考虑使用vcpkg等工具安装预编译的Boost库。问题通
2026-01-06 19:34:46
1024
原创 python虚拟环境实践:Conda 环境激活报错及解决
摘要 手写表格识别项目中遇到conda激活环境报错"KeyError('pkgs_dirs')"问题,解决方案包括: 检查依赖组件:重新安装pywin32并修复注册表项 更新conda到最新版本 检查环境变量配置,确保Anaconda路径正确 清理conda缓存并重建索引 若问题持续,可考虑删除并重建conda环境 这些方法可解决因依赖缺失、路径配置错误或环境损坏导致的conda激活失败问题。
2026-01-03 13:38:41
405
原创 表格识别实践:兼顾 “识别本身” 和 “工程落地” 的优化
本文提出了一套提高识别系统(OCR、图像识别等)准确性和效率的优化方案。从数据预处理、算法优化、后处理三个维度提升识别准确性,重点包括图像去噪、模型微调、结果校验等方法。在效率优化方面,强调批量处理、并行计算、减少IO操作等工程实现技巧,特别针对Excel操作卡顿问题提供了"批量识别+批量写入"的解决方案。文章还提供了硬件加速、环境调优等补充建议,并给出了分步骤的落地验证方案,最终实现识别质量和系统性能的双重提升。
2026-01-03 13:29:11
840
原创 python虚拟环境:如何使用Literal类型来限制函数参数的取值范围?
Python 的 Literal 类型用于严格限制变量或参数只能取特定字面量值,结合静态检查工具可提升代码健壮性。文章介绍了其基础用法:需 Python 3.8+ 或 typing_extensions 库,通过 Literal[值1, 值2...] 语法限制参数范围。提供了字符串、数值及混合类型的实战示例,并强调需手动添加运行时校验。建议使用类型别名简化复杂定义,配合 mypy 进行静态检查。适用于配置项、接口参数和状态机等需要严格限制值的场景,能清晰表达代码意图并预防非法值传入。
2026-01-03 13:12:21
708
原创 c++ bug
摘要: 在编译GDAL 3.10.2时,因Anaconda的gif_lib.h头文件与GDAL内置GIF模块冲突,导致GifAsciiTable8x8常量重复定义报错。提供三种解决方案: 临时移除Anaconda路径:重置环境变量,排除Anaconda依赖后重新编译; 禁用GIF驱动:通过CMake参数-DGDAL_DISABLE_DRIVER_GIF=ON跳过冲突模块; 修改头文件:添加宏保护避免重复定义。推荐优先使用方案1或2,若需保留GIF功能则采用方案3。此问题不影响GDAL核心功能(如路网投影转换
2026-01-03 13:06:50
950
原创 python虚拟环境:Literal包是做什么用的
Python 的类型提示系统中,Literal 用于指定变量只能取特定的字面量值,如 Literal["success","failure","pending"]。这能通过静态类型检查捕获错误,提高代码健壮性。同时,Literal 增强了代码可读性,明确显示参数的合法取值范围,特别适用于大型项目和配置管理,使开发意图更清晰,减少误解。
2026-01-03 13:05:18
320
原创 同样的war包,有时部署到接口是可以访问的,有时就报错404
摘要:解决Tomcat无法正常关闭的问题,可通过多次运行shutdown.bat文件尝试关闭,这通常是由于端口未正常释放所致。若问题仍未解决,建议以管理员身份重新运行Tomcat服务,确保有足够权限进行端口操作。该方法能有效处理因端口占用导致的Tomcat关闭异常情况。
2026-01-02 14:46:49
120
原创 springboot项目paddleocr安装避坑
摘要:本文介绍了Python OCR工具PaddleOCR的正确安装命令(需同时安装paddlepaddle基础包),并提供了Maven项目中打包虚拟环境的配置方法。同时说明了在Tomcat启动时需要设置PATH和PYTHONPATH环境变量,以指向项目中的虚拟环境路径和Python安装路径,确保OCR功能正常运行。
2026-01-02 14:45:47
229
原创 python虚拟环境实践:OMP Error #15
摘要:手写表格识别项目中遇到"OMP Error #15"报错,提示libiomp5md.dll重复初始化问题。经检查发现Anaconda目录下存在多个同名文件,导致冲突。解决方法为删除多余的libiomp5md.dll文件即可。(50字)
2026-01-02 14:45:04
226
原创 python深度学习实践:安装tensorflow报错解决
摘要:针对报错"THESE PACKAGES DO NOT MATCH THE HASHES",尝试使用pip install tensorflow==2.5.0 --no-cache-dir方案未能解决问题。最终通过直接下载轮子文件并本地安装的方式解决。该方案避免了缓存问题,若需具体操作细节可私信咨询。(98字)
2026-01-02 14:40:36
85
原创 在Tomcat中,使用多线程处理来同时处理多个接口的请求(springboot项目)
Tomcat中可通过线程池实现多线程处理请求。首先创建实现Runnable的请求处理类,然后在web.xml配置线程池参数(核心/最大线程数、队列容量)。最后在Servlet中获取线程池实例,将请求处理任务提交给线程池执行。这种方法能有效提高并发处理能力,通过调整线程池参数可优化性能。
2026-01-02 14:38:29
227
原创 解决matplotlib中文字体缺失方案
摘要:解决matplotlib中文字体缺失问题,报错提示找不到文泉驿微米黑和黑体-简字体。解决方案包括:安装缺失字体(Linux安装fonts-wqy-microhei,Windows安装微软雅黑等)、重建字体缓存、代码中显式指定可用中文字体,或通过修改matplotlibrc配置文件。在Jupyter Notebook中需重启内核使更改生效。
2026-01-01 09:59:32
447
原创 mstsc 频繁断开是由svchost 策略引起的吗?
摘要(149字): svchost策略通过代码完整性防护(CIG)和进程隔离增强系统服务安全性,与mstsc频繁断开无直接关联。RDP连接问题通常由网络不稳定、会话超时、RDP服务异常或防火墙拦截导致。解决建议包括:检查3389端口、调整会话超时策略、优化网络设置及统一RDP安全层配置。删除svchost策略不仅无效,还可能降低系统安全性。应优先排查网络和服务配置,并通过事件日志定位具体故障,而非修改系统安全策略。
2026-01-01 09:58:03
595
原创 nginx启动了,访问仍报504 Gateway Time-out
Nginx 504 错误通常由后端服务响应超时引起。针对 Django+Nginx 架构,排查步骤包括:1)检查 uWSGI/Gunicorn 进程是否运行;2)直接访问后端端口测试服务可用性;3)调整 Nginx 配置中的 proxy_connect_timeout、proxy_send_timeout 和 proxy_read_timeout 参数;4)检查后端性能瓶颈(数据库连接、服务器资源等)。解决方案包括重启服务、优化查询、增加超时设置和配置防火墙。建议对服务进行监控并优化耗时任务。
2026-01-01 09:55:07
1066
原创 SpringBoot项目实践:之前war部署到服务器好用,重新打包部署到服务器报404
摘要: Java Web项目(如Spring Boot/MVC)重新打包WAR部署后出现404错误,主要源于打包异常、部署配置不匹配或路径映射错误。排查步骤: 快速定位:通过容器日志判断应用是否启动成功,检查WAR是否解压; 核心解决: 验证WAR完整性(解压检查类文件、依赖及静态资源); 确认上下文路径(如重命名WAR为ROOT.war或修改server.xml); 检查资源/接口映射(静态资源路径、Controller注解及包扫描范围); 排查容器兼容性、权限及缓存问题(如清理Tomcat的work目录
2026-01-01 08:34:05
634
原创 FMM(Fast Map Matching)实践:ImportError: cannot import name ‘Network‘ from ‘fmm‘
本文针对Python导入错误ImportError: cannot import name 'Network' from 'fmm'提供了系统解决方案。首先指出该错误通常由版本迭代、安装不完整或路径冲突导致。解决方案分为四个步骤:1)确认新版fmm库的正确接口(如用NetworkGraph替代Network);2)完整重装官方版fmm库;3)排查路径冲突;4)必要时回退到兼容旧版。文章还对比了新旧版接口对应关系,并提醒常见陷阱如安装错误同名库或编译依赖缺失。通过该方法可有效解决fmm库的导入问题。
2026-01-01 08:31:54
862
原创 python深度学习项目实践:两个项目的代码基本一样,其中一个报错
代码相同但运行结果不同的常见原因包括:1) 环境变量和模块搜索路径差异可能导致依赖包加载失败;2) 项目间安装环境变化,如库更新破坏了原有依赖关系;3) 随机因素影响,如网络连接、未初始化变量或缓存状态差异。这些细微的环境变化都可能导致相同代码在不同运行时出现不同行为。
2025-12-31 08:51:26
439
原创 python深度学习报错:Original error was: No module named ‘numpy.core._multiarray_umath‘
摘要:本文分析了启动uvicorn服务时出现的numpy模块导入错误,主要原因是mkl-service包缺失和numpy安装配置问题。解决方案包括:1)安装mkl-service包;2)重新安装或调整numpy版本;3)检查tensorflow等依赖库的兼容性。通过正确安装相关组件并确保版本兼容性,可以解决该导入错误问题。
2025-12-31 08:48:30
1017
原创 虚拟环境创建,包导入报错
手写表格识别项目中遇到typing_extensions模块语法错误问题。该错误可能由模块版本与Python环境不兼容或文件损坏导致。解决方案包括:1)卸载并重新安装typing_extensions模块;2)检查Python版本兼容性;3)排查redis等依赖模块的兼容性问题;4)清理项目缓存文件。建议先通过conda激活环境后重新安装相关模块,再检查连锁报错问题,必要时升级Python版本或清理项目缓存文件以确保环境稳定性。
2025-12-30 10:23:35
648
原创 python虚拟环境实践:使用的python版本是3.6.5,env365应该是使用3.6.5,但不知为何会启动3.9
摘要:解决numpy C-extensions导入报错问题,建议首先激活正确的Python 3.6.5虚拟环境(conda或pip创建),然后重新安装兼容版本的numpy(如1.16.6)。同时检查项目requirements.txt文件和环境变量设置,确保项目路径和依赖正确。若仍有问题,可根据新报错信息进一步排查。这些步骤可解决大部分因环境配置不当导致的numpy导入问题。
2025-12-30 10:10:23
455
原创 windows Server 2012 安装导入opencv-python 提示DLL找不到
摘要:在Windows Server 2012 R2系统下,使用Python3.6+OpenCV4.4.0+FFmpeg进行视频处理时,出现import cv2报错"DLL not found"。虽然已通过pip正确安装opencv-python 4.4.0.46和numpy,但导入时仍提示DLL加载失败。尝试通过whl文件安装和DirectX检查dll文件均未解决问题。最终发现该问题与特定系统环境相关,找到了针对此场景的解决方案。(148字)
2025-12-29 13:02:50
693
原创 异常:Servlet.service() for servlet [dispatcherServlet] in context with path [] threw exception
Spring Boot 异常排查指南 当遇到DispatcherServlet处理请求抛出的异常时,建议按以下步骤排查: 定位根因:查看日志中的"Caused by"部分,确认具体异常类型(如NullPointerException) 常见问题: 空指针异常:检查@Autowired注入和参数判空 微信接口问题:验证code有效期和APPID配置 路径映射错误:核对Controller路径与请求路径 跨域问题:添加CORS配置 数据库异常:检查连接配置和SQL语句 排查步骤: 复现问题请
2025-12-29 13:00:51
1784
原创 windows下启动hbase的步骤
本文详细介绍了在Windows系统下启动HBase的完整流程。首先需要配置JDK 8环境并设置JAVA_HOME变量,建议安装适配Windows的Hadoop版本。核心步骤包括:修改hbase-env.cmd和hbase-site.xml配置文件(区分单机/分布式模式),以管理员权限运行start-hbase.cmd启动服务。启动后可通过jps命令、HBase Shell和Web UI(16010端口)三种方式验证服务状态。文中还提供了常见问题的解决方案,如缺少系统依赖、环境变量配置错误等。特别强调Wind
2025-12-28 09:26:32
1165
原创 报错:该版本的xx\fmm.exe 与你运行的 Windows 版本不兼容。请查看计算机的系统信息,然后联系软件发布者。
摘要:fmm.exe程序与Windows系统不兼容的问题通常由架构不匹配、依赖库缺失或编译环境差异导致。解决方案包括:检查系统与程序的架构匹配性;安装必要的Visual C++运行时库;重新编译FMM程序(需安装Visual Studio、CMake等工具);或改用FMM的Python API。通过这些方法可解决二进制兼容性问题,确保程序正常运行。
2025-12-28 09:25:19
1093
原创 hbase 避坑F:\hbase\hadoop\sbin>start-dfs.cmd 系统找不到文件 hadoop。
摘要:Windows下执行start-dfs.cmd报错"找不到hadoop"的解决方案:1)检查HADOOP_HOME环境变量配置,确保Path包含%HADOOP_HOME%\bin;2)修改脚本将hadoop改为hadoop.cmd;3)手动启动namenode/datanode作为备用方案。关键在于正确配置环境变量和适配Windows命令格式。
2025-12-27 09:55:57
1081
原创 hbase避坑:Hadoop 的 NameNode 找不到指定的存储目录
摘要:HBase/Hadoop迁移到F盘后启动失败,原因是配置文件残留C盘路径且未格式化新目录。解决方法:1)修改core-site.xml和hdfs-site.xml中的路径为F盘;2)手动创建对应目录;3)执行hdfs namenode -format格式化新目录;4)重启HDFS。关键点在于确保配置路径一致并完成首次格式化,注意重复格式化会清空数据。问题解决后HBase可正常启动。
2025-12-27 09:51:39
475
原创 node_modules目录可能会损坏或包含不兼容的包报错包括npm设置源命令及安装命令
摘要:本文介绍了清理npm缓存和切换镜像源的方法,包括删除node_modules目录和package-lock.json文件,以及使用npmmirror镜像源。同时列举了国内常用的npm镜像站:阿里云、腾讯云、华为云、中科大、清华、网易和淘宝(现npmmirror),这些镜像站都能提供更快的下载速度,适合国内开发者使用。其中特别提醒淘宝npm镜像已更新为registry.npmmirror.com。
2025-12-26 08:48:30
306
原创 虚拟环境启动报错SyntaxError invalid syntax
创建虚拟环境时遇到包冲突导致安装失败,报错显示缺少skbuild模块。这是由于依赖包版本冲突所致。解决方法包括:1)删除冲突包重新安装;2)升级pip和setuptools;3)作为兜底方案可重建虚拟环境。建议优先尝试删除冲突包并升级工具链,若无效则考虑重建环境。
2025-12-26 08:47:23
694
原创 pytorch cuda安装实践:Windows Server 2012 上安装 CUDA
摘要:本文详细介绍了在Windows Server 2012上安装CUDA的完整流程。首先需确认系统满足要求,包括支持CUDA的NVIDIA显卡、最新驱动程序和Visual Studio(含C++组件)。然后从NVIDIA官网下载合适版本的CUDA安装包,以管理员身份运行安装程序并完成安装。接着配置环境变量,添加CUDA的bin目录路径。最后通过命令提示符输入"nvcc -V"验证安装,并建议编译示例程序进行最终确认。整个过程需注意关闭安全软件,必要时重启计算机。
2025-12-25 08:55:50
507
原创 pytorch cuda安装实践:GPU 查询命令
本文汇总了Windows和Linux系统中查询GPU信息的常用命令。Windows系统包含通用显卡查询命令如wmic、dxdiag,以及NVIDIA专属命令如nvidia-smi。Linux系统提供lspci等通用命令,NVIDIA专用监控命令,以及第三方工具如gpustat和nvtop。这些命令可帮助用户快速获取GPU型号、显存占用、温度、频率等关键信息,适用于不同显卡型号和监控需求。
2025-12-25 08:48:39
427
原创 pytorch cuda安装实践:RuntimeError: CUDA unknown error
摘要:触发PyTorch CUDA未知错误的核心原因是CUDA环境初始化失败,主要包括四种情况:1)CUDA环境配置不匹配或初始化时机错误;2)PyTorch与系统CUDA版本不兼容;3)GPU驱动未安装或版本过低;4)权限或硬件问题。排查步骤包括验证系统GPU和CUDA状态、检查PyTorch的CUDA支持情况,以及修改代码逻辑确保先检查CUDA可用性再初始化设备。最终解决方案需确保驱动/CUDA版本匹配,或解决权限问题。
2025-12-24 10:51:10
719
原创 pytorch cuda安装实践:用set_sync_debug_mode,来测试gpu的使用情况
摘要:本文介绍了在CUDA 12.4环境下使用PyTorch测试GPU使用情况的方法。重点讲解了torch.set_sync_debug_mode()函数的作用,用于开启CUDA同步调试模式检测异步操作错误。提供了完整的代码示例,包括设备设置、线程配置、调试模式开启以及GPU运算测试。同时给出了CUDA 12.4环境配置建议和GPU使用率监控方法,推荐配合nvidia-smi命令实时观察GPU状态变化。文中还强调了CPU线程设置与GPU运算的区别,并提供了设备设置的优化写法建议。
2025-12-24 10:32:34
588
原创 FMM(Fast Map Matching)实践:消除opath数组中0值的核心策略与后续建议
摘要:成功消除opath数组的0值,实现所有轨迹正常匹配路网。核心策略包括参数调优、无效轨迹处理(偏移修复、几何校正)及数据预处理。后续建议校验匹配结果合理性,固化处理流程为脚本以便复用,并保存修复后的路网数据。关键经验是先调优参数解决大部分问题,再针对性处理剩余异常,该思路可推广至其他地图匹配场景。成果包括彻底消除0值,并提出精度校验和流程固化方案。
2025-12-23 21:07:09
446
bce-java-sdk-0.10.18.rar
2020-06-10
fastjson.rar
2020-06-10
google-collections-1.0.rar
2020-06-10
HIbernate4.3.6-c3p0所需jar.rar
2020-06-09
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅