机器学习
zhengudaoer
这个作者很懒,什么都没留下…
展开
-
tesseract-ocr 整体处理流程
一、通过边缘检测的方式识别出多个block二、通过多个block的信息,找出baseline,中文中的baseline 就是中文文本的最下沿。三、通过ba原创 2021-05-28 17:44:05 · 652 阅读 · 0 评论 -
一文读懂机器学习
原文地址:http://www.cnblogs.com/subconscious/p/4107357.html在本篇文章中,我将对机器学习做个概要的介绍。本文的目的是能让即便完全不了解机器学习的人也能了解机器学习,并且上手相关的实践。这篇文档也算是EasyPR开发的番外篇,从这里开始,必须对机器学习了解才能进一步介绍EasyPR的内核。当然,本文也面对一般读者,不会对阅读有相关的前提要求。转载 2017-06-21 16:32:49 · 360 阅读 · 0 评论 -
noe4j之cypher之where
WHERE where 关键字的用法在官方文档中描述为 与match 、optional match 联合使用,作用是添加约束;如果和with联合使用,用来过滤结果。其实意思差不太多,就是对返回结果设置了限定条件。where中可以加一些布尔运算符 入 and ,or, not ,xor。大多数情况下where用于节点或关系的属性判断 关于属性值的相关运算种类比较多 比如 n.age原创 2017-09-29 16:51:19 · 1736 阅读 · 0 评论 -
cypher实践之获取路径中name属性最短的那个节点
cypher实践之获取路径中name属性最短的那个节点原创 2017-11-08 13:58:10 · 1001 阅读 · 0 评论 -
cypher实践之match后面的逗号要注意。
match是最常用的关键字了看一个简单的例子:match (n:mechword{name:'生物工程'})--(m:mechword)with n,m match p=(n)-[r*..]-(m) return m;m返回一个名字叫“一般问题”的节点。如果改变下cypher语句:match (n:mechword{name:'生物工程'})--(m:mechword), p=原创 2017-11-10 17:48:02 · 1053 阅读 · 0 评论 -
机器学习的基石——概率论和贝叶斯定理
1、联合概率分布联合概率分布简称联合分布,是两个及以上随机变量组成的随机变量的概率分布。对于二维离散随机向量,设X和Y都是离散型随机变量, 和 分别是X和Y的一切可能的几何,则X和Y的联合概率分布可以表示为如下图的列联表,也可以表示为如下的函数形式其中2、边缘概率分布边缘分布(Marginal Distribution)指在概率论和统计学的多维随机变量中,只包含其中部分变量的概率分布。假设有一...原创 2018-04-02 22:39:48 · 1623 阅读 · 1 评论 -
信息量与信息熵
信息量信息奠基人香农(Shannon)认为“信息是用来消除随机不确定性的东西”。也就是说衡量信息量大小就看这个信息消除不确定性的程度。“太阳从东方升起了”这条信息没有减少不确定性。因为太阳肯定从东面升起。这是句废话,信息量为0。“吐鲁番下中雨了”(吐鲁番年平均降水量日仅6天)这条信息比较有价值,为什么呢,因为按统计来看吐鲁番明天不下雨的概率为98%(1-6/300),对于吐鲁番下不下雨这件事,首先...原创 2018-05-08 17:04:46 · 32548 阅读 · 9 评论