特征值与特征向量
我们知道,矩阵乘法对应了一个变换,是把任意一个向量变成另一个方向或长度都大多不同的新向量。在这个变换的过程中,原向量主要发生旋转、伸缩的变化。如果矩阵对某一个向量或某些向量只发生伸缩变换,不对这些向量产生旋转的效果,那么这些向量就称为这个矩阵的特征向量,伸缩的比例就是特征值。
实际上,上述的一段话既讲了矩阵变换特征值及特征向量的几何意义(图形变换)也讲了其物理含义。物理的含义就是运动的图景:特征向量在一个矩阵的作用下作伸缩运动,伸缩的幅度由特征值确定。特征值大于1,所有属于此特征值的特征向量身形暴长;特征值大于0小于1,特征向量身形猛缩;特征值小于0,特征向量缩过了界,反方向到0点那边去了。
关于特征值和特征向量,这里请注意两个亮点。这两个亮点一个是线性不变量的含义,二个是振动的谱含义。
——《线性代数的几何意义》
如果存在某个或某些向量在A作用之后,它只是伸长或者缩短,其位置仍停留在其原来张成的直线上,那么称之为A的特征向量,伸长或者缩短的倍数称为对应特征向量的特征值。公式表达为:
Av⎯⎯=λv⎯⎯ 式(1)
即 ∣∣A−λI∣∣=0
特殊地,来看看对角矩阵
det(X)=(2−λ)∗(3−λ) ( 特征方程,这是一个很简单的二项式)很容易看出 λ1=2,λ2=3
带入式(1)求 v⎯⎯
(20 03)[vivj]=[2vi3vj]=2⋅[