特征值(eigenvalue)特征向量(eigenvector)特征值分解(eigenvalue decomposition)

本文详细探讨了特征值和特征向量的概念,解释了它们在线性变换中的几何和物理意义,强调了它们作为线性不变量的重要性。文章介绍了特征值和特征向量的性质,如对角矩阵的变换、特征向量空间和特征值分解,并讨论了其在简化问题和图形压缩等具体应用中的价值。此外,还提供了Python求解特征值和特征向量的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

特征值与特征向量

我们知道,矩阵乘法对应了一个变换,是把任意一个向量变成另一个方向或长度都大多不同的新向量。在这个变换的过程中,原向量主要发生旋转、伸缩的变化。如果矩阵对某一个向量或某些向量只发生伸缩变换,不对这些向量产生旋转的效果,那么这些向量就称为这个矩阵的特征向量,伸缩的比例就是特征值。

实际上,上述的一段话既讲了矩阵变换特征值及特征向量的几何意义(图形变换)也讲了其物理含义。物理的含义就是运动的图景:特征向量在一个矩阵的作用下作伸缩运动,伸缩的幅度由特征值确定。特征值大于1,所有属于此特征值的特征向量身形暴长;特征值大于0小于1,特征向量身形猛缩;特征值小于0,特征向量缩过了界,反方向到0点那边去了。

关于特征值和特征向量,这里请注意两个亮点。这两个亮点一个是线性不变量的含义,二个是振动的谱含义。
——《线性代数的几何意义》

如果存在某个或某些向量在A作用之后,它只是伸长或者缩短,其位置仍停留在其原来张成的直线上,那么称之为A的特征向量,伸长或者缩短的倍数称为对应特征向量的特征值。公式表达为:

Av=λv 式(1)
AλI=0

特殊地,来看看对角矩阵

X=(2003)λI=(2λ003λ)

det(X)=(2λ)(3λ) 特征方程,这是一个很简单的二项式)很容易看出 λ1=2,λ2=3
带入式(1)求 v

(20 03)[vivj]=[2vi3vj]=2[

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值