- 博客(5)
- 收藏
- 关注
原创 caffe层笔记系列Loss层
SoftmaxWithLoss1. 可选参数 1) ignore_label int型变量,默认为空。 如果指定值,则label等于ignore_label的样本将不参与Loss计算,反向传播时梯度直接置0。 2) normalize bool型变量,即Loss会除以参与计算的样本总数,否则Loss等于直接求和。 3) normalization enum型变量,默认为VALID,详细情
2017-12-09 16:29:59
342
原创 看论文,做笔记系列(1)——Network in Network
重读论文《Network in Network》,发现有几点值得记录的地方,特记录在此!1.意义传统的convolution filter 是一个GLM(generalized linear model),其对图像局部区域的抽象能力有限。 使用基于GLM的传统CNN均内在的假设潜在的图像空间线性可分,但实际上可能并非如此。为解决该问题,传统CNN采用了较多的filter(超完备)对input进行卷
2017-10-23 17:53:26
468
原创 双线性差值算法
1.缘由在图像语义分割任务中,需要将最终的feature map放大到原图像大小,以实现对每个pixel的分类,进而完成语义分割。下面记录下常用的图像缩放算法——双线性差值。2.坐标映射本文讨论的是点阵图像,以3x3像素为例,灰度级为256,将其放大至4x4。坐标系如下图所示:假设3x3的像素矩阵称为源图,以source image表示,4x4的像素矩阵称为目标图像,以destination ima
2017-10-22 11:11:51
2152
原创 提升语义分割性能的几种方法
本文主要记录几种提升基于深度学习的图像语义分割精度的方法,以防忘记! By zhengzibing2011, 2017年10月21日-星期六1.图像语义分割面临的挑战(1).特征分辨率减小:主要是由神经网络中的重复最大池化和降采样(stride跨越)操作造成的,而采用此种操作的原因是 A.降维,以免参数过多难以优化;
2017-10-21 17:46:25
10853
2
原创 计算机CPU核与线程
CPU的核心数是指物理上,也就是硬件上存在着几个核心。比如,双核就是包括2个相对独立的CPU核心单元组。线程与进程:(1)进程: 资源管理的最小单位 独立的内存空间(2)线程: 程序执行的最小单位 拥有独立的栈空间包含关系:每个线程只能属于某一个进程,而一个进程至少有一个线程。进程:顾名思义就是正在进行中的程序,也可以说是正在运行的程序线程:一个程序至少有一个进程,
2017-05-27 15:24:22
755
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人