自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 收藏
  • 关注

原创 caffe层笔记系列Loss层

SoftmaxWithLoss1. 可选参数 1) ignore_label int型变量,默认为空。 如果指定值,则label等于ignore_label的样本将不参与Loss计算,反向传播时梯度直接置0。 2) normalize bool型变量,即Loss会除以参与计算的样本总数,否则Loss等于直接求和。 3) normalization enum型变量,默认为VALID,详细情

2017-12-09 16:29:59 342

原创 看论文,做笔记系列(1)——Network in Network

重读论文《Network in Network》,发现有几点值得记录的地方,特记录在此!1.意义传统的convolution filter 是一个GLM(generalized linear model),其对图像局部区域的抽象能力有限。 使用基于GLM的传统CNN均内在的假设潜在的图像空间线性可分,但实际上可能并非如此。为解决该问题,传统CNN采用了较多的filter(超完备)对input进行卷

2017-10-23 17:53:26 468

原创 双线性差值算法

1.缘由在图像语义分割任务中,需要将最终的feature map放大到原图像大小,以实现对每个pixel的分类,进而完成语义分割。下面记录下常用的图像缩放算法——双线性差值。2.坐标映射本文讨论的是点阵图像,以3x3像素为例,灰度级为256,将其放大至4x4。坐标系如下图所示:假设3x3的像素矩阵称为源图,以source image表示,4x4的像素矩阵称为目标图像,以destination ima

2017-10-22 11:11:51 2152

原创 提升语义分割性能的几种方法

本文主要记录几种提升基于深度学习的图像语义分割精度的方法,以防忘记! By zhengzibing2011, 2017年10月21日-星期六1.图像语义分割面临的挑战(1).特征分辨率减小:主要是由神经网络中的重复最大池化和降采样(stride跨越)操作造成的,而采用此种操作的原因是 A.降维,以免参数过多难以优化;

2017-10-21 17:46:25 10853 2

原创 计算机CPU核与线程

CPU的核心数是指物理上,也就是硬件上存在着几个核心。比如,双核就是包括2个相对独立的CPU核心单元组。线程与进程:(1)进程: 资源管理的最小单位   独立的内存空间(2)线程: 程序执行的最小单位   拥有独立的栈空间包含关系:每个线程只能属于某一个进程,而一个进程至少有一个线程。进程:顾名思义就是正在进行中的程序,也可以说是正在运行的程序线程:一个程序至少有一个进程,

2017-05-27 15:24:22 755

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除