spark contextcleaner 源码解读
本文通过学习spark 的源码加深对Java reference 的理解。
java 引用
java 有四类引用,分别是强引用、软引用、弱引用、虚应用。
强引用
如下代码片段所示,一个java对象句柄就是对其指向的对象的强引用。一个对象如果有强引用,该变量不会被垃圾回收。
String handle=new String("a string")
软引用
软引用对象引用另一个对象。只有软引用对象应用而不存在强应用的对象,在内存不足,进程抛出out of memory 异常之前会回收这些对象。如果软引用引用的对象没有被回收,get方法将返回被引用的对象,否则null。
需要注意的是,软应用对象本身也是一个对象,软引用类可以被继承。软应用对象是另一个对象的软应用,软应用对象的句柄是对软引用对象本身的强应用。
String handle=new String("a string");
SoftReference<String> sfh=new SoftReference<String>(handle);
assert sfh.get()!=null
弱引用
弱引用对象引用另一个对象。只有弱引用对象应用而不存在强应用或软引用的对象,这些对象在下次gc 的时候被回收。如果弱引用引用的对象没有被回收,get方法将返回被引用的对象,否则null。
需要注意的是,弱应用对象本身也是一个对象,弱引用类可以被继承,读者可以参考Threadlocal 对 弱引用的使用。弱引用对象是另一个对象的弱应用,弱应用对象的句柄是对弱引用对象本身的强应用。
String handle=new String("a string");
WeakReference<String> wfh=new WeakReference<String>(handle);
assert wfh.get()!=null
虚引用
弱引用对象引用另一个对象。虚引用对引用对象的生命周期没影响。无论所引用的对象有没有被回收,虚引用的get 方法都返回null。虚引用的用法是配合ReferenceQueue一起使用,起到通知进程某对象已被回收的作用。进程可以根据这些信息做一些善后的工作。
String handle=new String("a string");
引用和referencequeue
软引用、弱引用、虚应用都可以关联一个referencequeue。当这些引用对象所应用的对象被回收时,这些引用会被放到关联的referencequeue。
需要注意的时,因为软引用、弱引用、虚应用本身也是对象,有自己的生命周期。如果在引用对象所引用的对象被回收之前,引用对象就被回收了,那么在所引用的对象被回收时,引用对象将不会被放到关联的referencequeue,因为引用对象已经不在了。
以下是一段测试代码,测试引用对象先于被引用对象被回收时的情况。
import java.lang.ref.ReferenceQueue;
import java.lang.ref.WeakReference;
import java.util.LinkedList;
public class TestRef {
static Weak<TestRef> testWeak2(TestRef tc,ReferenceQueue<TestRef>rq,LinkedList<Weak<TestRef>>wq) {
TestRef tc2=new TestRef();
//refed lost before ref
Weak<TestRef> w1=new Weak<TestRef>(tc2,"test2",rq);
//ref lost before refed
Weak<TestRef> w2=new Weak<TestRef>(tc,"test3",rq);
return w1;
//wq.add(w1);
}
static void testWeak1(ReferenceQueue<TestRef>rq,LinkedList<Weak<TestRef>>wq) throws InterruptedException {
TestRef tc=new TestRef();
// change the next line to Weak<TestRef> w=testweak2(tc,rq,wq)
//to see diffirent result;
{testWeak2(tc,rq,wq);}
// this call just suggest the vm to gc,so we wait for a while,pray for it
System.gc();
Thread.sleep(1000);
Weak<TestRef> w1=new Weak<TestRef>(tc,"weak1",rq);
Weak<TestRef> w2=new Weak<TestRef>(tc,"weak2",rq);
Weak<TestRef> w3=new Weak<TestRef>(tc,"weak3",rq);
Weak<TestRef> w4=new Weak<TestRef>(tc,"weak4",rq);
// when this scope is exited,all weak refs but w2 and w3 are lost.
wq.add(w2);
wq.add(w3);
}
static class Weak<T> extends WeakReference<T>{
String name;
public Weak(T referent,String name,ReferenceQueue<T>rq) {
super(referent,rq);
this.name=name;
// TODO Auto-generated constructor stub
}}
public static void main(String[] args) throws InterruptedException
{
ReferenceQueue<TestRef> rq=new ReferenceQueue<TestRef>();
LinkedList<Weak<TestRef>>wq=new LinkedList<Weak<TestRef>>();
testWeak1(rq,wq);
// this call just suggest the vm to gc,so we wait for a while,pray for it
System.gc();
Thread.sleep(1000);
Weak<TestRef> wr=(Weak<TestRef>) rq.poll();
System.out.println("print weakref");
while (wr!=null)
{
System.out.println(wr.name);
wr=(Weak<TestRef>) rq.poll();
}
}
}
这个程序的运行输出结果是
print weakref
weak2
weak3
如果把代码中的第20行改成Weak w=testweak2(tc,rq,wq),输出结果将变成
print weakref
weak2
weak3
test2
各引用的使用场景
软应用引用的对象,在进程内存不足的时候会被回收。利用这点,可以用软引用缓存对象,内存不足时,对象自动被回收。
弱引用可以用来实现 canonical map,当一个key 在map之外已经不存在了,应该删除map 里这个key对应的对象。ThreadLocal 就是类似这样用的,具体可以看源码。
弱引用或虚引用可以配合ReferenceQueue使用,用来通知程序莫对象已被回收,可以做一些善后工作,比如资源回收,spark contextcleaner 就是这样做的。
spark contextcleaner
在spark 中,driver 端的对象可能对应集群中的资源。比如,RDD只是一个符号,RDD 对应的数据(如果已经计算好并cached or checkpointed)分布在集群中,占据了集群的磁盘和内存资源。当RDD回收时,我们希望RDD占用的集群的资源也要释放。
如果是在C++ 中,这好办,按照资源获取即初始化(RAII, Resource Acquisition Is Initialization)的逻辑,我们可以在对象的析构函数中释放对象获得的资源。可是Scala/java并没有析构函数这一说法,spark contextcleaner 中通过弱引用和ReferenceQueue来实现对象回收时资源的回收。
下面我们看源码
package org.apache.spark
import java.lang.ref.{ReferenceQueue, WeakReference}
import java.util.Collections
import java.util.concurrent.{ConcurrentHashMap, ConcurrentLinkedQueue, ScheduledExecutorService, TimeUnit}
import scala.collection.JavaConverters._
import org.apache.spark.broadcast.Broadcast
import org.apache.spark.internal.Logging
import org.apache.spark.rdd.{RDD, ReliableRDDCheckpointData}
import org.apache.spark.util.{AccumulatorContext, AccumulatorV2, ThreadUtils, Utils}
/**
* Classes that represent cleaning tasks.
*/
private sealed trait CleanupTask
private case class CleanRDD(rddId: Int) extends CleanupTask
private case class CleanShuffle(shuffleId: Int) extends CleanupTask
private case class CleanBroadcast(broadcastId: Long) extends CleanupTask
private case class CleanAccum(accId: Long) extends CleanupTask
private case class CleanCheckpoint(rddId: Int) extends CleanupTask
/**
* A WeakReference associated with a CleanupTask.
*
* When the referent object becomes only weakly reachable, the corresponding
* CleanupTaskWeakReference is automatically added to the given reference queue.
*/
private class CleanupTaskWeakReference(
val task: CleanupTask,
referent: AnyRef,
referenceQueue: ReferenceQueue[AnyRef])
extends WeakReference(referent, referenceQueue)
/**
* An asynchronous cleaner for RDD, shuffle, and broadcast state.
*
* This maintains a weak reference for each RDD, ShuffleDependency, and Broadcast of interest,
* to be processed when the associated object goes out of scope of the application. Actual
* cleanup is performed in a separate daemon thread.
*/
private[spark] class ContextCleaner(sc: SparkContext) extends Logging {
/**
* A buffer to ensure that `CleanupTaskWeakReference`s are not garbage collected as long as they
* have not been handled by the reference queue.
*/
private val referenceBuffer =
Collections.newSetFromMap[CleanupTaskWeakReference](new ConcurrentHashMap)
private val referenceQueue = new ReferenceQueue[AnyRef]
private val listeners = new ConcurrentLinkedQueue[CleanerListener]()
private val cleaningThread = new Thread() { override def run() { keepCleaning() }}
private val periodicGCService: ScheduledExecutorService =
ThreadUtils.newDaemonSingleThreadScheduledExecutor("context-cleaner-periodic-gc")
/**
* How often to trigger a garbage collection in this JVM.
*
* This context cleaner triggers cleanups only when weak references are garbage collected.
* In long-running applications with large driver JVMs, where there is little memory pressure
* on the driver, this may happen very occasionally or not at all. Not cleaning at all may
* lead to executors running out of disk space after a while.
*/
private val periodicGCInterval =
sc.conf.getTimeAsSeconds("spark.cleaner.periodicGC.interval", "30min")
/**
* Whether the cleaning thread will block on cleanup tasks (other than shuffle, which
* is controlled by the `spark.cleaner.referenceTracking.blocking.shuffle` parameter).
*
* Due to SPARK-3015, this is set to true by default. This is intended to be only a temporary
* workaround for the issue, which is ultimately caused by the way the BlockManager endpoints
* issue inter-dependent blocking RPC messages to each other at high frequencies. This happens,
* for instance, when the driver performs a GC and cleans up all broadcast blocks that are no
* longer in scope.
*/
private val blockOnCleanupTasks = sc.conf.getBoolean(
"spark.cleaner.referenceTracking.blocking", true)
/**
* Whether the cleaning thread will block on shuffle cleanup tasks.
*
* When context cleaner is configured to block on every delete request, it can throw timeout
* exceptions on cleanup of shuffle blocks, as reported in SPARK-3139. To avoid that, this
* parameter by default disables blocking on shuffle cleanups. Note that this does not affect
* the cleanup of RDDs and broadcasts. This is intended to be a temporary workaround,
* until the real RPC issue (referred to in the comment above `blockOnCleanupTasks`) is
* resolved.
*/
private val blockOnShuffleCleanupTasks = sc.conf.getBoolean(
"spark.cleaner.referenceTracking.blocking.shuffle", false)
@volatile private var stopped = false
/** Attach a listener object to get information of when objects are cleaned. */
def attachListener(listener: CleanerListener): Unit = {
listeners.add(listener)
}
/** Start the cleaner. */
def start(): Unit = {
cleaningThread.setDaemon(true)
cleaningThread.setName("Spark Context Cleaner")
cleaningThread.start()
periodicGCService.scheduleAtFixedRate(new Runnable {
override def run(): Unit = System.gc()
}, periodicGCInterval, periodicGCInterval, TimeUnit.SECONDS)
}
/**
* Stop the cleaning thread and wait until the thread has finished running its current task.
*/
def stop(): Unit = {
stopped = true
// Interrupt the cleaning thread, but wait until the current task has finished before
// doing so. This guards against the race condition where a cleaning thread may
// potentially clean similarly named variables created by a different SparkContext,
// resulting in otherwise inexplicable block-not-found exceptions (SPARK-6132).
synchronized {
cleaningThread.interrupt()
}
cleaningThread.join()
periodicGCService.shutdown()
}
/** Register an RDD for cleanup when it is garbage collected. */
def registerRDDForCleanup(rdd: RDD[_]): Unit = {
registerForCleanup(rdd, CleanRDD(rdd.id))
}
def registerAccumulatorForCleanup(a: AccumulatorV2[_, _]): Unit = {
registerForCleanup(a, CleanAccum(a.id))
}
/** Register a ShuffleDependency for cleanup when it is garbage collected. */
def registerShuffleForCleanup(shuffleDependency: ShuffleDependency[_, _, _]): Unit = {
registerForCleanup(shuffleDependency, CleanShuffle(shuffleDependency.shuffleId))
}
/** Register a Broadcast for cleanup when it is garbage collected. */
def registerBroadcastForCleanup[T](broadcast: Broadcast[T]): Unit = {
registerForCleanup(broadcast, CleanBroadcast(broadcast.id))
}
/** Register a RDDCheckpointData for cleanup when it is garbage collected. */
def registerRDDCheckpointDataForCleanup[T](rdd: RDD[_], parentId: Int): Unit = {
registerForCleanup(rdd, CleanCheckpoint(parentId))
}
/** Register an object for cleanup. */
private def registerForCleanup(objectForCleanup: AnyRef, task: CleanupTask): Unit = {
referenceBuffer.add(new CleanupTaskWeakReference(task, objectForCleanup, referenceQueue))
}
/** Keep cleaning RDD, shuffle, and broadcast state. */
private def keepCleaning(): Unit = Utils.tryOrStopSparkContext(sc) {
while (!stopped) {
try {
val reference = Option(referenceQueue.remove(ContextCleaner.REF_QUEUE_POLL_TIMEOUT))
.map(_.asInstanceOf[CleanupTaskWeakReference])
// Synchronize here to avoid being interrupted on stop()
synchronized {
reference.foreach { ref =>
logDebug("Got cleaning task " + ref.task)
referenceBuffer.remove(ref)
ref.task match {
case CleanRDD(rddId) =>
doCleanupRDD(rddId, blocking = blockOnCleanupTasks)
case CleanShuffle(shuffleId) =>
doCleanupShuffle(shuffleId, blocking = blockOnShuffleCleanupTasks)
case CleanBroadcast(broadcastId) =>
doCleanupBroadcast(broadcastId, blocking = blockOnCleanupTasks)
case CleanAccum(accId) =>
doCleanupAccum(accId, blocking = blockOnCleanupTasks)
case CleanCheckpoint(rddId) =>
doCleanCheckpoint(rddId)
}
}
}
} catch {
case ie: InterruptedException if stopped => // ignore
case e: Exception => logError("Error in cleaning thread", e)
}
}
}
/** Perform RDD cleanup. */
def doCleanupRDD(rddId: Int, blocking: Boolean): Unit = {
try {
logDebug("Cleaning RDD " + rddId)
sc.unpersistRDD(rddId, blocking)
listeners.asScala.foreach(_.rddCleaned(rddId))
logInfo("Cleaned RDD " + rddId)
} catch {
case e: Exception => logError("Error cleaning RDD " + rddId, e)
}
}
/** Perform shuffle cleanup. */
def doCleanupShuffle(shuffleId: Int, blocking: Boolean): Unit = {
try {
logDebug("Cleaning shuffle " + shuffleId)
mapOutputTrackerMaster.unregisterShuffle(shuffleId)
blockManagerMaster.removeShuffle(shuffleId, blocking)
listeners.asScala.foreach(_.shuffleCleaned(shuffleId))
logInfo("Cleaned shuffle " + shuffleId)
} catch {
case e: Exception => logError("Error cleaning shuffle " + shuffleId, e)
}
}
/** Perform broadcast cleanup. */
def doCleanupBroadcast(broadcastId: Long, blocking: Boolean): Unit = {
try {
logDebug(s"Cleaning broadcast $broadcastId")
broadcastManager.unbroadcast(broadcastId, true, blocking)
listeners.asScala.foreach(_.broadcastCleaned(broadcastId))
logDebug(s"Cleaned broadcast $broadcastId")
} catch {
case e: Exception => logError("Error cleaning broadcast " + broadcastId, e)
}
}
/** Perform accumulator cleanup. */
def doCleanupAccum(accId: Long, blocking: Boolean): Unit = {
try {
logDebug("Cleaning accumulator " + accId)
AccumulatorContext.remove(accId)
listeners.asScala.foreach(_.accumCleaned(accId))
logInfo("Cleaned accumulator " + accId)
} catch {
case e: Exception => logError("Error cleaning accumulator " + accId, e)
}
}
/**
* Clean up checkpoint files written to a reliable storage.
* Locally checkpointed files are cleaned up separately through RDD cleanups.
*/
def doCleanCheckpoint(rddId: Int): Unit = {
try {
logDebug("Cleaning rdd checkpoint data " + rddId)
ReliableRDDCheckpointData.cleanCheckpoint(sc, rddId)
listeners.asScala.foreach(_.checkpointCleaned(rddId))
logInfo("Cleaned rdd checkpoint data " + rddId)
}
catch {
case e: Exception => logError("Error cleaning rdd checkpoint data " + rddId, e)
}
}
private def blockManagerMaster = sc.env.blockManager.master
private def broadcastManager = sc.env.broadcastManager
private def mapOutputTrackerMaster = sc.env.mapOutputTracker.asInstanceOf[MapOutputTrackerMaster]
}
private object ContextCleaner {
private val REF_QUEUE_POLL_TIMEOUT = 100
}
/**
* Listener class used for testing when any item has been cleaned by the Cleaner class.
*/
private[spark] trait CleanerListener {
def rddCleaned(rddId: Int): Unit
def shuffleCleaned(shuffleId: Int): Unit
def broadcastCleaned(broadcastId: Long): Unit
def accumCleaned(accId: Long): Unit
def checkpointCleaned(rddId: Long): Unit
}
contextcleaner 的核心是referenceBuffer、referenceQueue、cleaningThread、periodicGCService四个对象。
referenceBuffer
referenceBuffer保存了对象的弱引用,referenceBuffer里的弱引用对象是弱引用类某一派生类的对象,保存了必要的信息去清理所引用的对象的资源。一个对象获得集群资源时,就会向referenceBuffer注册该对象的弱引用。
比如下面这段代码,在对RDD persist 后,向referenceBuffer注册该RDD的弱引用。把弱引用放进referenceBuffer是为了防止引用对象先于被引用对象被回收。
private def persist(newLevel: StorageLevel, allowOverride: Boolean): this.type = {
// TODO: Handle changes of StorageLevel
if (storageLevel != StorageLevel.NONE && newLevel != storageLevel && !allowOverride) {
throw new UnsupportedOperationException(
"Cannot change storage level of an RDD after it was already assigned a level")
}
// If this is the first time this RDD is marked for persisting, register it
// with the SparkContext for cleanups and accounting. Do this only once.
if (storageLevel == StorageLevel.NONE) {
sc.cleaner.foreach(_.registerRDDForCleanup(this))
sc.persistRDD(this)
}
storageLevel = newLevel
this
}
referenceQueue
向referenceBuffer注册的弱引用对象都关联到了referenceQueue,当弱引用引用的对象被回收时,弱引用会被放到该队列。
cleaningThread
cleaningThread 是个setDaemon 线程,该线程的执行逻辑是不断地从referenceQueue取出弱引用,做相应地清理工作;同时把该弱引用从referenceBuffer,以使得该弱引用本身也能够被回收。
periodicGCService
periodicGCService 按固定间隔调用system.gc(),敦促虚拟机gc。