面经问题汇总--Part 5

如何评价自己构建的数据集的好坏

数据集的质量可以从以下维度评估:

  • 多样性:覆盖足够多的场景和案例,避免样本单一。
  • 平衡性:标签分布均衡,避免少数类被淹没。
  • 噪声控制:标注错误或数据错误需在可接受范围内。
  • 实用性:能直接支持目标任务(如分类、生成等)。
  • 规模适配:数据量需与任务复杂度匹配,避免过拟合或欠拟合。

怎么评价人类高质量回答的数据集

高质量回答数据集需满足:

  • 真实性:答案需符合事实或逻辑,避免虚构。
  • 丰富性:覆盖多角度解答,不局限于简短回复。
  • 标注粒度:可能包含评分、多候选答案或错误分析。
  • 领域覆盖:针对垂直领域(如医疗、法律)需专业验证。

ChatGLM和GPT模型结构一样吗

两者均为基于Transformer的大语言模型,但存在差异:

  • 架构细节:ChatGLM可能采用GLM(General Language Model)结构,而GPT系列为纯解码器架构。
  • 训练目标:GPT通过自回归预测下一个词,ChatGLM可能结合双向注意力或任务特定优化。
  • 参数规模:具体实现中参数量与层数可能不同。

强化学习中奖励模型打分

打分机制

  • 奖励模型通常输出标量分数,数值范围依任务而定(如0-1或-10~10)。
  • 分数设计需与目标对齐(如流畅性、事实性加权组合)。

模型训练

  • 通过人类标注的偏好数据(如成对排序)训练,学习拟合人类评判标准。

强化学习的梯度更新实现

  • 策略梯度:直接优化策略网络,梯度公式为:
    ∇ θ J ( θ ) = E [ ∇ θ log ⁡ π θ ( a ∣ s ) ⋅ R ] \nabla_\theta J(\theta) = \mathbb{E}[\nabla_\theta \log \pi_\theta(a|s) \cdot R] θJ(θ)=E[θlogπθ(as)R]
  • PPO等算法:引入重要性采样和裁剪机制稳定更新。

Instruct和prompt区别

  • Instruct:通常为结构化任务描述(如“翻译以下句子”),更接近命令式。
  • Prompt:可为开放式引导(如“关于气候变化,谈谈你的看法”),灵活性更高。

传统人机对话的多回复生成

  • 候选排序:系统可能生成K个回复,按置信度或多样性排序输出。
  • 策略依赖:基于规则的系统可能固定回复数量,而端到端模型动态生成。

嵌套命名实体识别方法

嵌套命名实体识别(Nested NER)旨在处理文本中重叠或嵌套的实体,如“北京大学附属医院”中嵌套“北京大学”。以下是几种有效的解决方案:

基于序列标注的改进方法

  • 层叠式标注:采用多层级标注框架,先识别外层实体,再对内层实体进行二次标注。例如使用BiLSTM-CRF结合层级标签策略。
  • 指针网络:通过序列到序列的指针生成模型,直接标记实体的起始和结束位置,避免标签冲突。

基于片段分类的方法

  • 片段枚举:枚举所有可能的文本片段,分类判断是否为实体及类型。可结合BERT等预训练模型提升性能。
  • 超图表示:将文本片段表示为超图节点,利用图神经网络建模嵌套关系。

联合学习方法

  • 多任务学习:同时训练平坦NER和嵌套NER任务,共享底层特征表示。例如在BERT输出层设计并联的分类头。
  • 边界感知模型:引入额外的边界检测模块,增强模型对实体边界的敏感度。

端到端深度模型

  • Span-based模型:如DyGIE++,通过动态跨度表示和关系推理处理嵌套结构。
  • 序列生成模型:将任务转化为序列生成问题,使用T5等模型直接输出实体及其类型。

以下是一个基于Span分类的简化代码框架:

import torch
from transformers import BertModel, BertTokenizer

class SpanNER(torch.nn.Module):
    def __init__(self, pretrained_model, num_labels):
        super().__init__()
        self.bert = BertModel.from_pretrained(pretrained_model)
        self.classifier = torch.nn.Linear(self.bert.config.hidden_size, num_labels)
        
    def forward(self, input_ids, spans):
        outputs = self.bert(input_ids)
        sequence_output = outputs.last_hidden_state
        
        # 获取每个span的表示(平均池化)
        span_embeddings = []
        for (start, end) in spans:
            span_embed = sequence_output[:, start:end].mean(dim=1)
            span_embeddings.append(span_embed)
        
        logits = self.classifier(torch.stack(span_embeddings))
        return logits

评估指标选择

  • 严格匹配率:实体边界和类型完全正确才算识别成功
  • 部分匹配率:允许边界或类型部分正确
  • 层级F1值:分别计算外层实体和内层实体的F1分数

常用数据集

  • GENIA:生物医学领域嵌套实体标注
  • ACE2005:包含跨度和嵌套结构的通用领域数据集
  • NNE:中文嵌套命名实体数据集

实际应用中需根据领域特点调整模型架构,生物医学文本常需要结合领域词典增强性能,而社交媒体文本可能需要更强的上下文建模能力。


类别不均衡处理技术

过采样少数类(如SMOTE)、欠采样多数类、类别加权损失函数是常见方法。Focal Loss通过降低易分类样本的权重缓解不平衡问题。评估指标应选用F1-score或AUC而非准确率。



长文本定义与大模型处理

长文本指超出标准上下文窗口(如4k tokens)的输入。处理方法包括:窗口滑动注意力、层次化摘要、位置插值(如NTK-aware Scaling)扩展上下文长度。专用架构如Longformer使用稀疏注意力机制。


Tokenizer处理流程

文本规范化(大小写/标点处理)→预分词→子词分割(BPE/WordPiece)→ID映射。特殊token([CLS],[SEP])被添加以支持下游任务,多语言tokenizer需处理Unicode标准化。


大模型核心缺陷

高计算资源需求导致部署困难;微调成本高昂;生成内容不可控风险;知识更新滞后;输出存在偏见与幻觉。小样本学习能力与人类推理仍存在差距。


大模型与传统对话差异

传统方案依赖流水线架构(意图识别→对话状态跟踪→回复生成),而大模型通过端到端生成统一处理。大模型具备零样本泛化能力,但可解释性较差,且需要严格的安全对齐。


大模型幻觉问题本质

参数化知识存储导致事实性错误,训练目标(语言建模)与真实准确性存在偏差。注意力机制在长程依赖中可能丢失关键信息,模型倾向于生成流畅但虚构的内容。缓解需结合检索增强生成(RAG)和事实核查机制。

大模型幻觉评测指标

设计事实性评估基准(如TruthfulQA),统计模型生成内容与权威来源的冲突率。基于NLI模型检测生成文本的逻辑一致性,或通过人类评估幻觉出现的频率和严重程度。

大模型幻觉(Hallucination)指模型生成内容与事实不符或缺乏依据的现象。评测幻觉的指标可分为基于事实一致性、可验证性、逻辑合理性等多个维度。

问题搜集来源于网络

在Java开发领域,拥有3到5年经验的开发者通常被视为中级到高级人才,他们在实际项目中积累了丰富的实战经验,并具备解决复杂问题的能力。以下是一些常见的问题和经验分享。 ### 常见问题 1. **高并发系统设计** - 如何设计一个高并发的库存扣减系统?这是电商、供应链等领域的重要问题,要求候选人理解分布式锁、事务管理、数据库优化等技术。 2. **Java基础与特性** - 了解Java的基本数据类型及其包装类(如`int`与`Integer`)是必须的,此外还需掌握自动装箱/拆箱机制以及它们在实际编程中的应用[^2]。 3. **Spring框架相关** - Spring Boot因其易上手、开箱即用的特点而广受欢迎。试可能会涉及Spring Boot的核心特性,比如内嵌服务器、安全管理、运行数据监控等功能的设计原理和使用方法[^3]。 4. **设计模式** - 单例模式是一个常考的设计模式之一。创建一个公共静态方法来返回对象供外部调用是实现单例的一种方式,它保证在整个系统中对某个类实例只能存在单个实例[^4]。 5. **JVM内部机制** - 理解JVM内存模型、垃圾回收机制以及性能调优技巧对于处理大型应用至关重要。 6. **多线程与并发编程** - 试官可能询问关于线程池配置、同步工具类(如CountDownLatch, CyclicBarrier)、volatile关键字作用及适用场景等问题。 7. **数据库与SQL优化** - 包括但不限于索引优化策略、查询语句优化、事务隔离级别等方的知识点都是考察重点。 8. **微服务架构** - 对于有一定工作经验的人来说,熟悉微服务架构下的服务注册发现、配置中心、API网关等组件的工作原理和服务治理方案是非常重要的。 9. **版本控制工具** - Git作为目前最流行的版本控制系统,在团队协作过程中扮演着不可或缺的角色。因此,熟练掌握Git命令行操作以及图形界工具也是加分项。 10. **测试驱动开发(TDD)** - 掌握单元测试编写技能,能够利用JUnit或TestNG等框架进行有效测试,有助于提高代码质量并减少后期维护成本。 ### 经验分享 - 在准备试时,除了复习理论知识外,还应该注重实践能力的培养。可以通过参与开源项目或者自己动手做一些小项目来加深对知识点的理解。 - 模拟真实场景解决问题的能力同样重要。当遇到具体业务需求时,试着从整体架构出发思考解决方案,并考虑可扩展性、安全性等因素。 - 学会沟通表达也很关键。清晰地向试官阐述自己的思路和技术选型理由可以给对方留下深刻印象。 - 最后不要忽视软技能的学习,良好的团队合作精神和积极主动的态度往往能让一个人脱颖而出。 ```java // 示例:饿汉式单例模式实现 public class Singleton { // 私有构造函数防止外部直接实例化 private Singleton() {} // 内部创建唯一实例 private static final Singleton INSTANCE = new Singleton(); // 提供获取唯一实例的方法 public static Singleton getInstance() { return INSTANCE; } } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值