自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(184)
  • 收藏
  • 关注

原创 【图像处理基石】如何入门ISP算法开发?

入门ISP(Image Signal Processor,图像信号处理)算法开发需要结合理论学习、实践操作和工程实现能力。,从简单模块入手,逐步构建完整的ISP流水线,并在实际项目中优化和验证算法效果。通过以上步骤,你可以逐步掌握ISP算法开发的核心技能。

2025-05-06 22:54:02 914

原创 【AI产品】Manus,启动!

后面还会继续分享更多的试用体验,也欢迎大家一起加入探索,把这个工具用得更好~如果你有有关AI生产力工具的好点子也可以联系我,我们一起讨论,为社区做出贡献。科学之后就可以注册了。注册后,我先在手机上玩了一把。这样那样,跟之前yxh上写的挺相似的。大概十几分钟后,真的给我产出了一份报告!但是这么几大段就这么一条注释,我也是很费解啊!Try了第一步,就需要科学上网,因为国内呢,是跟千问合作的,现在还不能用。打开了一看,内容还真的很像那么回事的!所以我火速让manus增加了一下注释,出了个新版。

2025-04-12 11:25:39 214

原创 今天全网爆火的Manus到底是什么?Manus的功能与意义深度解析

Manus的爆火既反映了市场对AI Agent的期待,也暴露了技术炒作与真实能力之间的落差。对普通人而言,它是潜在的效率工具;对从业者,则是技术迭代与商业化的试验场。其长远意义在于推动AI从“辅助”走向“执行”,但需警惕过度营销对行业信誉的消耗。,而非仅提供建议或答案。该产品因宣称“知行合一”的能力(如自动生成PPT、分析股票、筛选简历等)迅速引发行业热议,甚至导致官网因流量激增崩溃,邀请码被炒至数万元。注册,但官方强调未开放付费渠道,二手平台的邀请码多为虚假信息。目前Manus处于内测阶段,需。

2025-03-06 20:57:21 4343 1

原创 2025年了,AI算法工程师的校招主要考察哪些内容?

结合大模型时代的技术趋势与计算机视觉(CV)算法岗的校招要求,校招考察要点呈现以下核心特征:编程与算法基础深度学习与CV专业知识项目与实战经验大模型核心技术前沿技术与创新思维工程与落地能力岗位类型差异行业招聘趋势技术准备简历与面试优化行业动态跟踪大模型时代下,CV算法岗校招呈现**“基础能力强化+技术边界扩展”**的双重特征:

2025-03-05 19:15:49 1359

原创 DeepSeek-R1技术革命:用强化学习重塑大语言模型的推理能力

DeepSeek-R1的成功验证了算法创新比算力堆砌更重要的技术哲学。通过GRPO算法与规则奖励系统的精妙设计,团队用1%的成本实现了顶尖性能,这为开源社区提供了可复现的技术范本。随着更多研究者加入这场推理能力的进化竞赛,我们正在见证AGI发展路径的根本性转向——从依赖人类标注的被动学习,走向自主探索的智能涌现时代。

2025-02-09 21:16:50 3037 1

原创 【python与生活】如何构建一个解读IPO招股书的算法?

构建一个基于Python的IPO招股书解读算法需要结合自然语言处理(NLP)技术和大型语言模型(LLM)。该算法可以根据需要进一步扩展,例如添加更多的分析维度、优化提示模板以获得更精确的回答,或者集成其他大模型。

2025-06-07 23:22:49 251

原创 【图像处理基石】如何构建一个简单好用的美颜算法?

美颜算法是一种基于图像处理技术的算法,主要用于改善人像照片或视频中的人物外观,使其看起来更符合审美标准(如皮肤光滑、五官精致、肤色均匀等)。它广泛应用于手机相机、直播软件、图片编辑工具等场景,是计算机视觉和数字图像处理领域的常见应用之一。磨皮(Skin Smoothing)美白/美黑(Skin Whitening/Darkening)五官优化(Facial Features Enhancement)去皱/瘦脸(Wrinkle Reduction)妆容增强(Virtual Makeup)高斯模糊与双边滤波肤色

2025-06-07 23:17:43 602

原创 【深度学习新浪潮】RoPE对大模型的外推性有什么影响?

大模型的外推性(Extrapolation)是指模型对训练数据分布之外的输入或场景进行有效推理和生成的能力。简单来说,就是模型处理“未见过的新情况”的能力,这些新情况可能在语义、结构、长度、复杂度等方面超出了训练数据的范围。核心概念解析与内插性(Interpolation)的区别内插性:模型对训练数据中已有模式的合理延伸(例如,训练数据包含“猫”和“狗”,模型能理解“宠物”的概念)。外推性:模型对训练数据中未直接涵盖的模式或边界外的情况。

2025-06-06 17:21:26 474

原创 【深度学习新浪潮】如何入门三维重建?

三维重建是理论与工程结合紧密的领域,坚持“学中做,做中学”是关键,遇到问题多参考社区解决方案(如Stack Overflow、GitHub Issue),逐步积累经验。

2025-06-06 09:50:47 46

原创 【图像处理入门】6. 频域图像处理:傅里叶变换与滤波的奥秘

频域图像处理通过傅里叶变换将图像从空间域转换到频率域,为图像增强、去噪、压缩等任务提供全新视角。本文将深入解析傅里叶变换原理,介绍低通、高通滤波的实现方式,结合OpenCV和Python代码展示频域滤波在去除噪声、增强边缘中的应用,帮助读者掌握图像频域处理的核心技术。傅里叶变换将图像分解为频率分量,低频代表平滑区域,高频代表边缘和噪声低通滤波用于去噪,高通滤波用于边缘增强滤波器设计和数据类型转换是频域处理的关键。

2025-06-05 14:33:31 521

原创 【图像处理入门】5. 形态学处理:腐蚀、膨胀与图像的形状雕琢

形态学处理是基于图像形状特征的处理技术,在图像分析中扮演着关键角色。本文将深入讲解腐蚀、膨胀、开闭运算等形态学操作的原理,结合OpenCV代码展示其在去除噪声、提取边缘、分割图像等场景的应用,带你掌握通过结构元素雕琢图像形状的核心技巧。腐蚀和膨胀是核心操作,开闭运算基于此解决复杂问题结构元素的形状和尺寸直接影响处理效果,需灵活调整常用于图像预处理、后处理阶段,提升后续分析的准确性下一篇我们将学习霍夫变换与轮廓检测,掌握从图像中提取直线、圆等几何形状,以及分析物体轮廓特征的方法。

2025-06-05 14:31:01 222

原创 【python与生活】用 Python 从视频中提取音轨:一个实用脚本的开发与应用

在当今数字化的时代,视频内容无处不在。无论是学习教程、会议记录、在线讲座还是娱乐视频,我们每天都会接触到大量的视频资源。有时候,我们可能只对视频中的音频部分感兴趣,比如提取讲座的音频用于后续收听,或者从电影中分离出背景音乐用于创作。这时候,能够从视频中高效地提取音轨就显得尤为重要。

2025-06-03 22:11:19 1228

原创 【图像处理入门】4. 图像增强技术——对比度与亮度的魔法调节

校正公式:(V_{\text{out}} = (V_{\text{in}} / 255)^\gamma \times 255)γ=1:无变化γ<1:提亮暗部(暗部细节更清晰)γ>1:压暗亮部(高光区域细节保留)# 归一化到[0,1],计算伽马变换,再恢复到[0,255]# 应用伽马校正(提亮暗部,gamma=0.5)# 压暗亮部(gamma=2.0)直方图均衡化适合全局对比度拉伸,尤其对低对比度图像效果显著伽马校正擅长处理非线性亮度问题,可针对性提亮/压暗特定区域。

2025-06-03 21:44:10 334

原创 【深度学习新浪潮】多模态模型如何处理任意分辨率输入?

Transformer的自注意力机制天然支持可变长度序列,只需调整输入序列长度(补丁数),但需注意计算复杂度((O(N^2)),(N)为补丁数)。多模态模型处理任意分辨率输入的能力主要依赖于架构设计的灵活性和预处理技术的结合。将图像分割为固定大小的补丁(如16×16或32×32像素),不同分辨率的图像会生成不同数量的补丁。(如Sparse Attention)或。(如PVT)降低计算量。

2025-06-02 20:59:01 247

原创 【深度学习新浪潮】以Dify为例的大模型平台的对比分析

通过综合评估核心功能、适用场景、易用性、扩展性和安全性,企业可根据自身需求选择最适合的平台,或采用多平台协同策略以实现AI应用的高效落地与长期优化。

2025-06-02 14:59:08 335

原创 【复杂网络分析】什么是modularity?

是衡量网络社区结构(即节点分组为紧密连接的社区,而社区间连接稀疏)的重要指标。它由Mark Newman和Michelle Girvan于2004年提出,广泛用于评估社区检测算法的效果,或描述网络本身的模块化特性。Modularity是复杂网络社区分析的基石,但其分辨率限制和零模型假设使其在小社区、大规模或非均质网络中存在缺陷。直接刻画网络的模块化程度,帮助理解网络功能(如生物网络中的功能模块、社交网络中的社群结构)。用于判断网络划分成社区的合理性,例如比较不同算法或参数下的社区划分结果,选择。

2025-06-01 23:47:25 972

原创 【ISP算法精粹】动手实战:用 Python 实现 Bayer 图像的黑电平校正

在数字成像领域,图像信号处理器(ISP)如同幕后英雄,默默将传感器捕获的原始数据转化为精美的图像。而黑电平校正,作为ISP预处理流程中的关键一环,直接影响着最终图像的质量。今天,我们就通过Python代码,亲手实现对Bayer格式图像的黑电平校正,揭开数字成像的神秘面纱。

2025-06-01 23:37:36 313

原创 【图像处理入门】3. 几何变换基础:从平移旋转到插值魔法

掌握图像的几何变换相当于学会「图像的空间魔法」。本文将带你理解平移/旋转/缩放的数学原理,掌握OpenCV中warpAffine和的核心用法,对比最近邻、双线性等插值算法的优劣。通过图像翻转、镜像、透视变换实战,学会用变换矩阵控制图像的空间形态,为图像配准、目标检测等高级应用铺路。平移/旋转/缩放通过仿射变换矩阵实现,本质是像素的坐标映射插值算法的选择直接影响变换后的图像质量,双线性插值是平衡之选warpAffine和是处理2D/3D变换的核心函数。

2025-05-31 23:19:03 201

原创 【图像处理入门】2. Python中OpenCV与Matplotlib的图像操作指南

通过掌握这些基础操作,您将为后续的图像处理学习打下坚实基础。建议通过实际项目(如证件照背景替换、图像特效制作)加深理解。

2025-05-31 23:14:07 1093

原创 【AI算法工程师面试指北】Transformer与CNN有什么异同点?

Transformer 和 CNN(卷积神经网络)是深度学习中两种重要的架构,分别在自然语言处理(NLP)和计算机视觉(CV)领域取得了突破性成果。它们既有相似之处,也有显著差异。(如多层卷积层、多层Transformer层),通过加深网络提升复杂特征的表达能力。,通过多层非线性变换捕捉数据中的层次化特征(如低层的边缘、纹理,高层的语义概念)。均依赖大规模数据训练,通过反向传播优化参数,适用于处理高维数据(如图像、文本)。

2025-05-30 23:13:34 639

原创 【图像处理基石】如何进行图像畸变校正?

图像畸变校正常用于计算机视觉、摄影测量学和机器人导航等领域,能够修正因镜头光学特性或传感器排列问题导致的图像失真。下面我将介绍几种常用的图像畸变校正算法,并提供Python实现和测试用例。

2025-05-30 23:10:03 846

原创 【深度学习新浪潮】什么是混合精度分解?

混合精度分解通过“分解-量化-协同”的技术路径,在大模型压缩中实现了精度与效率的双赢。其核心优势在于按需分配精度资源,既避免了全低精度量化的性能损失,又突破了全高精度的资源限制。随着硬件支持的完善(如FP8、INT4 Tensor Core)和算法优化的深入,混合精度分解有望成为大模型端侧部署的标配技术,推动人工智能从云到端的全面普及。

2025-05-29 21:52:41 154

原创 【图像处理基石】立体匹配的经典算法有哪些?

这些算法奠定了立体匹配的理论基础,后续深度学习方法(如GC-Net、PSMNet)多基于经典算法的约束条件(如视差连续性)进行改进。下面是一个基于OpenCV的Python实现,展示了如何使用SIFT特征和RANSAC算法进行立体匹配并计算视差图。先提取图像中的显著特征(如角点、边缘),再对特征点进行匹配,减少计算量但依赖特征质量。利用图像的相位信息(而非幅值)进行匹配,对噪声和光照不敏感,但需多尺度分析。通过构建能量函数并全局优化(如最小化视差不连续代价),获取更平滑的视差图。

2025-05-29 21:44:21 1622

原创 【AI算法工程师面试指北】大模型微调中的灾难性遗忘该如何避免?

在大模型微调(Fine-tuning)过程中,**灾难性遗忘(Catastrophic Forgetting)**是一个关键挑战,尤其当模型需要在保留预训练阶段所学通用知识的同时,适应新任务或领域时。对于数十亿到数千亿参数的大模型,这种更新方式风险极高——即使是微小的参数变化,也可能通过深层网络的传播效应,对全局知识产生连锁破坏。微调时,若对参数进行大范围更新,可能会“覆盖”或“破坏”旧知识的存储,导致模型“遗忘”原始能力。当模型在微调(学习新任务)时,过度修改了预训练阶段学到的核心知识,导致其在。

2025-05-28 15:10:21 623

原创 【AI算法工程师面试指北】小球检测问题

使用简单的CNN模型直接预测圆形的位置和半径。该方法需要大量标注数据进行训练才能达到良好效果,示例中使用的是随机初始化的模型,实际应用中应使用预训练模型。它基于圆的参数方程,在参数空间中寻找峰值点来确定圆的位置和半径。小球检测(或圆形物体检测)在多个领域有实际应用,具体场景和技术需求因领域而异。根据具体场景的需求(精度、速度、成本),可以灵活组合传统方法和深度学习,实现高效的小球检测方案。设计算法检测出圆球,给出图中的坐标。使用时,你可以根据具体场景选择合适的检测方法,并调整相应参数以获得最佳效果。

2025-05-28 15:01:36 1216

原创 【深度学习新浪潮】智能眼镜关键技术拆解(简要版)

硬件性能逼近人眼极限(如Micro LED+光波导组合实现60PPD)和交互体验趋向自然无感(如脑机接口+无手柄交互)。当前行业正处于技术成熟期(Gartner曲线的“高原期”),核心挑战从单点突破转向系统级优化——需在显示、光学、算力、能源等维度实现性能-功耗-成本的三角平衡。未来3年,随着5nm SoC量产(如苹果A18X)、硅碳电池普及(能量密度>800Wh/L)和光波导良率提升(>95%),消费级智能眼镜有望突破2000元价格门槛,进入大众市场。

2025-05-27 11:45:08 216

原创 【深度学习新浪潮】以图搜地点是如何实现的?(含大模型方案)

下面是一个使用Python实现照片位置识别功能的方案,包含基于传统计算机视觉和深度学习的方法,以及结合大模型的方案。对于大模型方案,还需要设置有效的OpenAI API密钥。使用这些代码时,你需要安装相关的依赖库,如。

2025-05-27 11:39:59 210

原创 【图像处理基石】什么是色彩模式?

显示的色彩模式是指用数学方法和不同颜色通道组合来表示颜色的规则体系,不同模式适用于不同的显示设备、设计场景或输出需求。1.1 常见色彩模式解析1. RGB模式(加色模式)原理:通过红(Red)、绿(Green)、蓝(Blue)三原色光的叠加来混合出各种颜色,每种颜色通道取值范围通常为0-255(8位色)。特点加色模式:三原色光叠加越接近白色(如R=255+G=255+B=255=白色)。色域范围。

2025-05-26 12:04:56 1026

原创 【Python与生活】CPI是什么?

CPI(Consumer Price Index,消费者价格指数)是衡量一组代表性消费品及服务项目价格水平随时间变动的相对数,反映居民家庭购买消费商品及服务的价格水平的变动情况。使用时,你可以根据实际需求修改商品篮子、价格数据或添加更多功能,如季节性调整、权重更新等高级CPI计算方法。

2025-05-26 11:56:22 749

原创 【深度学习新浪潮】如何用Dify构建自己的AI Agent?

该Agent支持多时间线叙事生成(如1920年上海滩、2077年赛博都市等),通过“时间锚点”将不同时空的剧情隐秘关联,生成跨时空交织的故事网络。用户上传表格并选择图表类型(如柱状图、雷达图),Agent自动解析数据结构,生成包含Chart.js库的HTML代码,并通过第三方存储服务返回可直接运行的可视化链接。例如,学生在开发图书借阅系统时,只需输入需求,Agent即可生成包含注释和测试用例的Python代码,并提供代码优化建议。在构建过程中,要不断进行测试和优化,以提升Agent的性能和用户体验。

2025-05-24 22:05:10 228

原创 【深度学习新浪潮】什么是MCP?

MCP(Model Context Protocol,模型上下文协议)是由Anthropic于2024年11月开源的标准化协议,旨在统一AI模型与外部工具、数据源的交互方式,解决传统集成中的碎片化问题。其核心设计类似于USB-C接口,通过客户端-服务器架构(Host/Client/Server)实现模型与外部资源的“即插即用”,使AI应用能够高效调用数据库、API、文件系统等资源,同时支持动态上下文传递和多模型协作。MCP为AI开发者提供了标准化的协作框架,显著降低了多模型集成和外部资源调用的复杂度。

2025-05-24 21:56:17 312

原创 【复杂网络分析】社区发现(Community Detection)算法简介

社区发现(Community Detection)是复杂网络分析的核心任务之一,旨在将网络划分为内部连接紧密、外部连接稀疏的子结构(社区)。以下介绍5种经典算法的原理、流程,并提供Python实现示例(基于常用库)。

2025-05-23 15:56:51 1446

原创 【ISP算法精粹】ISP算法管线的预处理算法有哪些?

实际应用中,需根据传感器特性、场景需求和硬件资源,选择合适的算法组合,并通过标定(Calibration)和自适应机制(如自动黑电平更新)提升鲁棒性。在图像信号处理(ISP)流程中,预处理阶段主要针对图像传感器(如CMOS/CCD)输出的原始图像数据(通常为拜耳格式的RAW图像)进行初步处理,以校正硬件缺陷、去除噪声并为后续处理(如去马赛克、色彩校正等)奠定基础。以下是一个基于Python实现的ISP预处理流程,包含了坏点校正、黑电平校正、镜头阴影校正和降噪等核心算法,并附带测试用例。

2025-05-23 15:46:40 264

原创 【深度学习新浪潮】2025年谷歌I/O开发者大会keynote观察

这是谷歌搜索的一项新功能,通过集成Gemini模型,用户可输入多段式复杂问题(例如“帮我分析最近3个月的股市趋势,并对比不同行业的表现”),系统会自动调用实时数据与历史信息生成结构化答案,甚至支持体育赛事预测、金融数据分析等专业场景。框架,允许开发者构建“多屏应用”(如手机App可无缝切换到平板或智能手表),并通过Gemini Nano的本地AI模型实现跨设备任务同步(例如在手机上开始编辑文档,切换到PC时自动续接进度)。同时,蓝牙追踪精度提升至0.5米,并支持“远程锁定+数据擦除”一键操作。

2025-05-22 15:13:26 484

原创 【图像处理入门】1. 数字图像的本质:从像素到色彩模型

图像是离散化的像素矩阵,分辨率和位深度决定了图像的 “先天素质”灰度图像是单通道的亮度矩阵,彩色图像通过不同色彩模型编码颜色信息OpenCV 的imread和imshow是探索图像本质的显微镜,Matplotlib 则是观察图像的望远镜下一篇我们将深入图像的基本操作,学会用代码对像素矩阵进行 “外科手术”—— 裁剪、缩放、通道操作。现在请打开你的 IDE,用开启属于你的图像处理之旅吧!思考:为什么相机拍摄的 JPEG 图像在 PS 中打开和用 OpenCV 读取的颜色可能不同?

2025-05-22 11:13:09 391

原创 【ISP算法精粹】什么是global tone mapping和local tone mapping?

全局色调映射(Global Tone Mapping)和局部色调映射(Local Tone Mapping)是高动态范围(HDR)图像处理中的两种关键技术,用于将高动态范围图像的亮度值映射到标准动态范围(LDR)内,同时保留图像的细节和视觉质量。方法核心优势适用场景视网膜感知模型符合人眼视觉特性,保色性好人像、风景照片直方图优化增强局部对比度医学影像、监控视频梯度域处理精确控制细节保留高动态范围场景深度学习自适应学习最优映射复杂场景、高质量需求混合方法平衡效率与效果。

2025-05-20 19:53:24 584

原创 【芯片开发】芯片开发流程中的基线是什么?

基线是芯片开发中“分阶段稳定、分阶段推进”的核心机制,通过对设计成果的标准化管理,平衡了开发效率与质量控制的需求,是复杂芯片项目成功的关键要素之一。它是后续开发工作的基准和起点,用于控制变更、确保团队协作的一致性,并为项目管理提供可追溯的里程碑。例如:通过频繁的小版本基线(如每周冻结一次验证通过的代码),替代传统的大阶段基线,提高开发效率。在敏捷开发模式中,基线的概念可能更灵活,强调“持续集成”和“快速迭代”,但核心思想不变——

2025-05-20 11:04:40 268

原创 【深度学习新浪潮】什么是多模态大模型?

多模态大模型是AI从“单一能力”迈向“通用智能”的重要一步,它让机器具备更接近人类的感知和认知能力,有望重塑人机交互、内容生产、行业效率等多个领域。简单来说,这类模型就像人类一样,能同时“看”“听”“读”“说”,并将不同信息关联起来,完成复杂任务。基于Transformer等深度学习架构,参数规模通常达数十亿至数千亿,通过海量跨模态数据(如图文对、视频文本对)训练,学习不同模态的统一表征。传统模型通常只能处理单一模态(如纯文本的GPT、纯图像的CNN),而多模态大模型可以同时接收并分析多种类型的数据。

2025-05-19 22:29:02 310

原创 【深度学习新浪潮】如何入门人工智能?

入门人工智能(AI)需要结合数学基础、编程技能、机器学习理论和实践项目,逐步深入。:AI入门有门槛,但通过“理论→实践→复盘”的循环,逐步积累即可。初期遇到问题很正常,多查资料、多交流,保持耐心!:全职学习约3-6个月可掌握基础并完成简单项目,后续需持续实践和跟进领域进展。:不必追求精通,但需掌握基本概念和应用场景,后续通过实践加深理解。

2025-05-19 22:24:13 185

原创 【图像处理基石】OpenCV中都有哪些图像增强的工具?

亮度与对比度调整线性变换(亮度/对比度调整)直方图均衡化自适应直方图均衡化(CLAHE)滤波与平滑高斯滤波中值滤波双边滤波锐化与边缘增强拉普拉斯算子高通滤波非锐化掩蔽(Unsharp Masking)色彩空间变换灰度转换HSV色彩调整颜色平衡高级增强技术伽马校正对数变换幂律变换工具类型优点缺点适用场景线性变换简单高效,直接调整亮度对比度参数选择依赖经验,可能导致信息丢失快速调整基础对比度直方图均衡化全局增强对比度,无需参数。

2025-05-18 23:51:07 677 1

在本地部署deepseek模型的python代码实现

在本地部署deepseek模型的python代码实现。需要本地GPU支持。

2025-03-10

机器学习与模式识别领域的PRML习题解析手册

内容概要:本文档是由高正奇编辑的针对模式识别和机器学习(PRML)教科书的一份详细的解答手册。文档覆盖了从基本概念如误差函数求导、贝叶斯定理应用到多元高斯分布计算、Gamma函数积分及其性质等一系列复杂问题的解决方案,以及涉及线性模型分类的基础练习题、条件概率和联合概率计算等入门级习题。每一题都经过细致推导,帮助学生加深对机器学习相关概念的理解并掌握具体的数学方法。 适合人群:主要适用于正在攻读机器学习、模式识别相关课程的学生,以及从事数据科学工作的专业人士作为深入理解和实践指南。 使用场景及目标:本手册旨在辅助教学过程中遇到的具体难题解析,在研究和实践中作为参考资料进行理论验证和技术难点突破,尤其有助于准备考试或者项目实施时需要巩固知识的应用场合。 其他说明:书中题目涵盖广泛,既有直观的概率论应用,也有复杂的积分变换技巧和最优化思路展示,对于希望提高自身计算能力和解决实际问题能力的学习者非常有价值。但要注意的是,部分内容较为深奥,可能不适合初学者自学使用,最好配合课堂讲解或其他教材一起学习效果更佳。

2025-03-10

在TensorFlow中将预训练好的模型转换成tflite格式模型的python代码实现

在TensorFlow中将预训练好的模型转换成tflite格式模型的python代码实现。无需GPU即可。

2025-03-10

Pytorch中VIT架构的python实现

Pytorch中VIT架构的python实现

2025-03-10

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除