自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

智能守恒_HengAI

带你走入AI驱动的视觉处理技术的世界。

  • 博客(570)
  • 收藏
  • 关注

原创 【图像处理基石】基于暗光图像恢复颜色有哪些难点?

暗光图像颜色恢复的核心难点在于“信息缺失下的噪声、颜色、细节协同优化”。现有算法通过传统物理模型与深度学习的结合,在中等暗光场景下实现了较好的颜色恢复,但在极端条件、泛化性、自然度等方面仍有不足。未来需从“物理约束+数据驱动”融合、轻量化模型设计、鲁棒评价指标构建等方向突破,实现更真实、高效的颜色恢复。

2025-07-28 17:44:41 1320 1

原创 【图像处理基石】如何入门ISP算法开发?

入门ISP(Image Signal Processor,图像信号处理)算法开发需要结合理论学习、实践操作和工程实现能力。,从简单模块入手,逐步构建完整的ISP流水线,并在实际项目中优化和验证算法效果。通过以上步骤,你可以逐步掌握ISP算法开发的核心技能。

2025-05-06 22:54:02 1191 1

原创 今天全网爆火的Manus到底是什么?Manus的功能与意义深度解析

Manus的爆火既反映了市场对AI Agent的期待,也暴露了技术炒作与真实能力之间的落差。对普通人而言,它是潜在的效率工具;对从业者,则是技术迭代与商业化的试验场。其长远意义在于推动AI从“辅助”走向“执行”,但需警惕过度营销对行业信誉的消耗。,而非仅提供建议或答案。该产品因宣称“知行合一”的能力(如自动生成PPT、分析股票、筛选简历等)迅速引发行业热议,甚至导致官网因流量激增崩溃,邀请码被炒至数万元。注册,但官方强调未开放付费渠道,二手平台的邀请码多为虚假信息。目前Manus处于内测阶段,需。

2025-03-06 20:57:21 4919 1

原创 2025年了,AI算法工程师的校招主要考察哪些内容?

结合大模型时代的技术趋势与计算机视觉(CV)算法岗的校招要求,校招考察要点呈现以下核心特征:编程与算法基础深度学习与CV专业知识项目与实战经验大模型核心技术前沿技术与创新思维工程与落地能力岗位类型差异行业招聘趋势技术准备简历与面试优化行业动态跟踪大模型时代下,CV算法岗校招呈现**“基础能力强化+技术边界扩展”**的双重特征:

2025-03-05 19:15:49 1673

原创 DeepSeek-R1技术革命:用强化学习重塑大语言模型的推理能力

DeepSeek-R1的成功验证了算法创新比算力堆砌更重要的技术哲学。通过GRPO算法与规则奖励系统的精妙设计,团队用1%的成本实现了顶尖性能,这为开源社区提供了可复现的技术范本。随着更多研究者加入这场推理能力的进化竞赛,我们正在见证AGI发展路径的根本性转向——从依赖人类标注的被动学习,走向自主探索的智能涌现时代。

2025-02-09 21:16:50 3420 1

原创 【图像处理基石】有哪些好用的图像去噪算法可以推荐一下么?

在计算机视觉、数字图像处理的项目中,图像去噪是永远绕不开的核心预处理步骤。我们采集到的图像,会因为传感器、光照、传输、拍摄设备等因素,不可避免的混入各类噪声,噪声会直接掩盖图像的有效特征,导致后续的分割、检测、识别、特征提取等任务精度大打折扣。在尽可能去除图像噪声的同时,保留图像的边缘、纹理、细节等有效信息,这也是衡量一个去噪算法好坏的核心标准。这篇博客面向算法入门者/图像处理新手,整理了工程中最常用、最好用、最易上手的图像去噪算法,从传统经典算法到进阶优化算法,再到入门级深度学习去噪算法,全部包含。

2025-12-28 16:27:26 338

原创 【深度学习新浪潮】Thor芯片在哪些计算领域有很强的技术优势?

英伟达Thor芯片(Jetson AGX Thor+DRIVE Thor双系列)作为Blackwell架构的旗舰级算力芯片,是目前物理AI+边缘异构计算领域的天花板级产品。不同于传统的算力芯片仅堆参数,Thor的核心竞争力是「算力规格+异构架构+场景化算力调度」的三重结合,其优势不是泛泛的“算力强”,而是在特定计算领域能把算力利用率、低延迟、多任务并行做到极致。很多技术文章聊Thor只讲参数和理论优势,少了落地的代码实践环节,这也是技术学习中最核心的痛点——

2025-12-28 16:20:12 97

原创 【图像处理基石】现代图像处理发端与物理关联算法详解:从原理到Python代码上手

现代图像处理(数字层面)的发端是1964年NASA JPL对月球探测器图像的数字处理,其核心标志是「图像数字化+计算机运算」;经典图像处理算法多与物理学深度绑定:傅里叶变换(波动光学)、高斯模糊(光的衍射/布朗运动)、维纳滤波(信号传输模型)、直方图均衡化(感光/视觉物理);物理原理是图像处理算法的底层逻辑,理解物理本质能帮助我们更灵活地调整算法参数、优化处理效果,而非机械调用API;

2025-12-27 16:35:10 32

原创 【图像处理基石】什么是光栅化?

光栅化的本质是「3D投影→图元转像素→着色+深度测试」,其核心价值在于极致的实时性,这是光线追踪难以替代的优势。3D顶点透视投影→三角形包围盒遍历→像素归属判断→颜色插值→深度测试。你可以在此基础上逐步迭代,最终实现支持复杂3D模型和逼真效果的实时渲染器。如果在扩展过程中遇到问题(如纹理映射错位、深度缓冲闪烁),欢迎在评论区交流~ 后续会更新“光栅化实现立方体”“GLSL着色器入门”等进阶内容,敬请关注!

2025-12-27 16:29:53 966

原创 【图像处理基石】光线追踪(Ray Tracing)算法入门

光线追踪的本质的是「逆向追踪光线+几何交点计算+物理着色」,其入门门槛远低于想象——只要掌握“向量点积、归一化”两个核心数学工具,就能实现基础效果。相机发射光线→检测交点→计算光照→填充像素。你可以在此基础上逐步迭代,最终实现支持复杂材质和全局光照的渲染器。如果在扩展过程中遇到问题(如反射递归栈溢出、折射方向计算错误),欢迎在评论区交流~ 后续会更新“光线追踪+GPU加速”“路径追踪实现”等进阶内容,敬请关注!

2025-12-26 15:34:31 749

原创 【图像处理基石】图像处理领域还有哪些核心挑战与难题?

图像处理的挑战贯穿图像采集-预处理-特征提取-高层任务的全流程,核心矛盾在于图像质量退化、场景复杂度、计算资源约束、模型泛化能力四个方面。未来的发展方向将围绕鲁棒的低质量图像恢复算法、高效的轻量化模型、跨域泛化的通用特征提取、多模态融合技术展开,同时结合行业需求,解决特定领域的专属难题。

2025-12-26 15:21:40 1097

原创 【图像处理基石】什么是神经渲染?

在计算机图形学和计算机视觉的交叉领域,神经渲染(Neural Rendering)正成为最热门的研究方向之一。它打破了传统渲染依赖手工设计规则的局限,用神经网络学习从数据到图像的映射,让“AI画画”“数字人重建”“场景生成”等酷炫应用成为可能。本文将从入门视角讲解神经渲染的核心原理,并通过极简的代码实现一个基础的神经渲染器,让你快速上手这个前沿技术。神经渲染是结合神经网络和计算机图形学用神经网络替代/辅助传统渲染管线中的部分或全部模块。

2025-12-25 23:18:12 601

原创 【深度学习新浪潮】算力集群 / 智算中心的节点定义与规模解析

节点定义:集群的最小独立计算单元,具备完整的计算、存储、网络能力。节点分类:通用HPC集群包含计算、存储、管理、登录节点;智算中心核心是AI计算节点。节点规模:入门级节点适合小任务,中高端节点适合大模型训练和大规模计算,太空节点需满足特殊环境要求。关键指标:AI节点看加速卡数量和算力,HPC节点看CPU核心数和内存,太空节点看抗辐射和功耗。

2025-12-25 16:40:47 41

原创 【图像处理基石】VR的眩晕感是如何产生的?

VR眩晕感的核心是视觉-前庭系统的感官冲突,其解决需要硬件、软件、内容设计、用户适应的多领域协同。作为算法工程师,我们的核心目标是通过运动预测、视觉-前庭融合、动态参数调整、个性化适配和端侧优化,最大化视觉-前庭信号的同步性,降低眩晕感。脑机接口:直接读取大脑的前庭信号,实现视觉与前庭信号的精准同步;数字孪生:构建用户的数字孪生模型,实现个性化的实时优化;多模态融合:结合触觉、嗅觉等多模态信息,进一步提升沉浸感,减少眩晕感。

2025-12-25 16:37:20 1002

原创 【3D技术研究】2025 VR技术全景:核心突破、旗舰产品与行业落地新趋势

2025年VR产业完成了从技术积累到规模化发展的关键跨越:硬件端实现轻量化与高清化的双重突破,Micro-OLED与薄饼光学技术走向成熟;生态端AI+MR重构了内容生产与交互逻辑,Android XR系统打通跨平台壁垒;应用端从消费娱乐延伸至工业、医疗、低空经济等核心领域,产业价值全面释放。当前产业仍面临部分挑战:消费级设备的电池续航、中型开发者的盈利难题、内容生态与硬件发展的失衡等问题尚未完全解决。

2025-12-25 16:28:31 667

原创 【大模型技术研究】SGLang入门指南:高效大模型推理与编程的利器(附实战代码)

SGLang通过模板化提示原生对话管理高效推理引擎和便捷工具调用,为大模型应用开发提供了全新的解决方案。它不仅降低了开发门槛,还在高性能计算场景下展现出显著的性能优势,尤其适合需要处理高并发、复杂提示的大模型应用。随着大模型技术的发展,SGLang的生态也在不断完善,未来将支持更多模型架构和更丰富的工具链集成。如果你正在开发大模型应用,不妨尝试一下SGLang,它可能会成为你提升开发效率的利器。

2025-12-24 23:07:34 195

原创 【复杂网络分析】圣诞背后的算法魔力:4个复杂网络算法(附硬核细节+可运行代码)

孩子集合Cc1c2cnCc1​c2​...cn​,礼物集合Gg1g2gmGg1​g2​...gm​偏好矩阵P∈Rn×mP∈Rn×mPijP_{ij}Pij​表示孩子cic_ici​对礼物gjg_jgj​的偏好值(1-10分,越高越喜欢)分配矩阵X∈01n×mX∈01n×mXij1X_{ij}=1Xij​1表示礼物gjg_jgj​。

2025-12-24 23:00:25 656

原创 【图像处理基石】[特殊字符]圣诞特辑:10+经典图像处理算法,让你的图片充满节日氛围感!

圣诞季的数字世界总需要点“仪式感”——给照片加飘雪、识别圣诞树、给亲友头像P圣诞帽、把普通场景换成圣诞风…这些看似“一键生成”的效果,背后其实藏着满满的图像处理算法智慧。作为程序员,与其用现成的滤镜APP,不如亲手实现这些圣诞特效!本文从传统计算机视觉(CV)到现代AI算法,拆解10+圣诞主题图像处理算法,附可直接运行的代码片段,新手也能快速上手,让你的圣诞图片自带技术buff✨。快速上手:用OpenCV实现雪花、灯光检测、圣诞帽合成,5分钟出效果;

2025-12-24 22:52:46 1210

原创 【python与生活】从手机定位到车辆导航:GPS定位算法原理与Python实现

GPS定位的核心是“通过4颗卫星的伪距解算三维坐标+时间偏差”,本质是解非线性方程组的数学问题。本文用Python实现了核心算法,模拟了从卫星信号到接收机定位的全过程,也解释了其在手机、车辆导航等生活场景的应用。理解GPS定位原理,不仅能帮我们搞懂日常工具的底层逻辑,也能为开发定位相关应用(如轨迹分析、位置服务)打下基础。如果需要更高精度的定位,可结合北斗卫星、AGPS、RTK等技术,核心算法仍基于本文的牛顿-拉夫逊迭代框架。

2025-12-23 19:09:03 1093

原创 【深度学习新浪潮】什么是robotaxi?

Robotaxi的核心算法栈是一个复杂的系统工程,涉及感知、定位、规划、控制等多个环节。端到端学习:从感知到控制的端到端模型,将简化算法栈,提高系统效率。多智能体协同:Robotaxi之间的协同规划,将提高交通效率。轻量化算法:适用于低成本硬件的轻量化算法,将推动Robotaxi的规模化落地。尽管Robotaxi的落地还面临法规、成本、安全等挑战,但随着算法技术的不断进步和工程化能力的提升,Robotaxi有望在未来5-10年内实现规模化运营,成为城市交通的重要组成部分。

2025-12-23 19:03:41 109

原创 【图像处理基石】图像梯度:核心算法原理与经典应用场景全解析

图像梯度是图像处理的核心概念,其应用贯穿于从基础到高级的各个视觉任务。本文从数学本质出发,解析了5种经典梯度计算算法的原理与对比,结合5个经典应用场景展开分析,并提供了可直接运行的Python代码实现。

2025-12-22 11:39:01 1382

原创 【大模型技术研究】可以把一台8卡的H100服务器和一台8卡的H200服务器组成一个集群用于大模型的全量训练么?

H100+H200异构集群并非简单的硬件拼接,而是通过“架构兼容+并行策略优化+负载均衡”实现1+1>2的效果。核心在于抓住“统一软件环境、适配并行策略、监控调优闭环”三大关键点,就能以更低成本完成中大规模大模型全量训练。

2025-12-22 11:29:01 141

原创 【AI智能体技术】过去一年AI智能体研发进展与产品盘点:从技术突破到规模化落地

过去一年,AI智能体完成了从技术概念到产业实践的关键跨越。随着开发工具链的成熟与应用成本的降低,智能体正从“高端配置”变为“基础工具”,重塑组织协作与个人生活的核心逻辑。未来,随着轻量化、可信化技术的演进,AI智能体将实现更广泛的普及,成为数字经济增长的核心引擎。这一年,智能体技术实现了架构范式、核心能力与落地场景的三重突破,不仅诞生了神经符号融合、多智能体协同协议等底层创新,更涌现出一批覆盖企业级、个人终端、垂直行业的标杆产品,推动人机协作进入“目标设定-自主执行”的全新阶段。

2025-12-21 16:17:04 672

原创 【深度学习新浪潮】近三年大模型信息论研究进展:从理论解释到技术落地

从实现模型参数的极致压缩,到保障多模态融合的可解释性,再到提升安全对齐的精准度,信息论正成为大模型从“经验驱动”向“理论驱动”转型的核心引擎。尽管当前仍面临语义量化、效率平衡等挑战,但随着信息论与统计物理、因果推理等学科的深度交叉,未来必将推动大模型在泛化能力、部署效率与安全可靠性上实现更大突破,为AGI的发展奠定坚实基础。从模型能力涌现的底层解释到实际部署的效率优化,信息论为大模型研究提供了全新的理论视角与技术路径,推动领域从经验驱动向理论驱动转型。

2025-12-21 16:11:22 130 1

原创 【AI算法工程师必知必会】用爷爷奶奶都能懂的话,讲透强化学习的PPO、DPO、GRPO

PPO:强化学习的“通用解”,稳定、易实现,适合单任务场景。DPO:大模型对齐的“新宠”,步骤简单、样本效率高,适合需要对齐人类偏好的场景。GRPO:多任务学习的“利器”,在PPO的基础上加入正则化,防止遗忘旧技能。强化学习的算法更新很快,但核心逻辑始终不变——让智能体通过反馈学习最优策略。PPO、DPO、GRPO这三种算法,分别从“稳定性”“对齐效率”“多任务学习”三个角度解决了强化学习的关键问题。希望这篇文章能帮助大家用通俗的方式理解这三种算法,同时也能掌握它们的技术细节和代码实现。

2025-12-20 21:24:53 817

原创 【深度学习新浪潮】对称性:从数学本质到大模型训练与推理的效率革命

对称性的本质是变换下的不变性。即一个系统在某种操作(变换)后,其核心性质保持不变。这一概念最早源于几何学,后被推广到代数、物理等领域,最终成为人工智能研究的重要理论工具。对称性作为贯穿数学、物理与AI的核心概念,在大模型研究中具有不可替代的价值。从几何对称到语义对称,从代数对称到结构对称,对称性的利用贯穿了大模型的架构设计、训练优化、泛化提升与推理加速全流程。对称性能有效降低训练成本(数据增强、分布式训练);对称性能提升模型泛化能力(不变性学习、对称正则化);

2025-12-20 21:14:59 138

原创 【复杂网络分析】什么是图神经网络?

图(Graph)是由节点(Node)和边(Edge)组成的一种数据结构,用于描述事物之间的关联关系,数学表示为GVEG = (V, E)GVEVVV:节点集合(比如社交网络中的用户、分子中的原子);EEE:边集合(比如用户之间的好友关系、原子之间的化学键)。为了让图包含更多信息,实际应用中会给节点或边赋予属性(Feature),这类图称为属性图。社交网络中,节点属性可以是用户的年龄、性别、兴趣标签;交通网络中,边属性可以是道路的长度、通行速度。

2025-12-19 23:10:22 742

原创 【图像处理基石】如何进行色彩还原?

有没有过这样的经历?在餐厅灯光下拍的美食偏黄,阴天户外拍的风景发灰,网购的衣服图片是温柔奶茶色,收到货却偏橘调?这些都是色彩失真在搞鬼!色彩还原技术就是为了解决这些问题,它能消除设备、光照等因素带来的颜色偏差,让图像还原真实模样。不管是日常拍照、老照片修复,还是设计印刷、街头艺术创作,都离不开它的助力。本文将用通俗的语言讲解主流色彩还原算法,搭配可直接运行的Python代码,让你轻松上手实操。

2025-12-19 22:59:55 1119

原创 【大模型技术研究】什么是稀疏注意力机制?

AttentionQKVSoftmaxQKTdkVAttentionQKVSoftmaxdk​​QKT​V,其中注意力权重矩阵A∈Rn×nA∈Rn×n是稠密的;QKVSoftmaxQKT⊙MdkVQKVSoftmaxdk​​QKT⊙M​V,其中M∈01n×nM∈01n×n是稀疏掩码矩阵,⊙\odot⊙为哈达玛积,Mij0M_{i,j}=0Mi。

2025-12-18 14:05:21 39

原创 【大模型技术研究】什么是划窗注意力机制?

给定序列Xx1x2xn∈Rn×dXx1​x2​...xn​∈Rn×dddd为特征维度),划窗注意力为每个位置iii定义一个窗口范围i−kiki−kik2k1w2k+1=w2k1w为窗口大小),仅计算xix_ixi​与窗口内token的注意力得分,而非全部序列。划窗注意力机制是Transformer长序列优化的核心技术,其本质是以空间换时间。

2025-12-18 13:59:20 38

原创 【图像处理基石】一文搞懂Refocus(重聚焦)算法

Refocus算法,直译是“重新对焦”算法,本质是通过算法手段调整图像焦平面的技术。拍摄后自由选择焦点位置,让原本失焦的区域变得清晰;模拟浅景深效果,实现背景虚化或前景虚化;生成全清晰图像,让场景中近、中、远不同深度的物体同时清晰呈现。其核心逻辑是:通过获取场景的深度信息(或多视角数据),计算不同物体到镜头的距离,再通过图像合成或像素调整,模拟出不同对焦平面的成像效果。简单说,就是算法替我们“重新安排”了图像中哪些区域该清晰、哪些区域该虚化。

2025-12-17 17:08:25 1160

原创 【AI算法工程师必知必会】手把手教你画出高颜值神经网络图!

Matplotlib手动绘制:灵活度高,适合定制化需求,尤其适合全连接层、教学场景;PyTorchviz自动生成:效率高,适合复杂模型,快速生成计算图。掌握这些方法后,你可以轻松画出符合论文、报告、教学需求的高颜值神经网络图。简洁清晰、层次分明、配色专业,避免过度装饰导致重点不突出。如果需要绘制更复杂的网络(如Transformer的注意力层、ResNet的残差块),可以在Matplotlib基础上扩展节点形状(矩形、菱形)、添加箭头、标注维度信息等。

2025-12-17 15:00:11 1078

原创 【深度学习新浪潮】用AI工具解析美联储新闻,搭建量化投资分析流水线

用AI工具解析美联储新闻,本质是将“定性政策信号”转化为“定量分析指标”,让投资决策更高效、更客观。本文搭建的流水线仅需50行核心代码,即可实现从新闻采集到资产预测的全流程自动化。未来可进一步优化的方向:一是引入大语言模型(如GPT-4o)做政策文本深度解读,挖掘“点阵图分歧”“官员立场博弈”等隐性信息;二是接入实时交易数据,构建“新闻→信号→交易”的闭环策略。

2025-12-16 22:32:25 370

原创 【AI面试必知必会】面试必看:AI 编程工具该如何向大厂面试官表述?

AI编程工具的使用经验不是“洪水猛兽”,而是面试中的“加分项”——前提是你能清晰传递“工具是辅助,核心能力才是根本”的逻辑。了解目标公司对AI工具的政策(可通过官网招聘说明、学长学姐内推信息确认);准备2-3个“AI工具+项目成果”的具体案例,确保数据真实、逻辑清晰;明确自身核心竞争力,让AI工具经验成为“锦上添花”,而非“雪中送炭”。最后想说:大厂招聘的本质是“寻找能解决问题的人”,AI编程工具只是你解决问题的手段之一。

2025-12-16 22:19:49 563

原创 【深度学习新浪潮】qwen3-0.6B这种小模型有什么实际意义和用途吗?

普惠AI:让AI技术从数据中心"飞入寻常百姓家",使离线智能成为可能边缘智能基石:为IoT、移动设备提供"本地大脑",开启"端侧智能"新范式企业数字化加速器:降低AI应用门槛,助力中小企业数字化转型隐私保护卫士:数据本地处理,规避云端泄露风险,符合GDPR等法规简言之,小模型不是"低配版",而是AI技术"精准落地"的关键一步,让智能真正"无处不在"。下一步:根据应用场景选择合适模型——简单对话、移动端应用、特定领域任务,Qwen3-0.6B值得优先考虑;复杂推理则可搭配大模型形成"轻+重"混合架构。

2025-12-15 14:03:39 205

原创 【大模型技术学习】大模型压力测试全攻略:以Qwen3-32B为例

本文以Qwen3-32B为例,完整讲解了大模型压力测试的核心流程:从环境搭建、推理服务部署,到Locust压测脚本编写、结果分析与可视化。压测前明确核心指标(并发、RT、TPS、资源利用率、错误率),避免无目标测试;大模型推理优先选择vLLM等高效框架,提升并发处理能力;压测需分多轮(低/中/高并发),结果需结合资源使用率分析瓶颈;压测后根据结果针对性优化(硬件/推理/服务层),确保生产环境稳定。本文的代码可直接复用,只需根据实际场景调整模型路径、prompt、并发数等参数。

2025-12-15 13:28:32 179

原创 【Python与生活】Python实战 | 全网最全QS世界大学排名分析

QS世界大学排名是全球最具影响力的大学排名之一,无论是留学选校、学术研究还是高校竞争力分析,都有重要参考价值。本文将手把手教你用Python完成QS排名的数据爬取、清洗、分析与可视化,从0到1实现完整的数据分析流程,即使是Python新手也能轻松上手。本文通过Python完成了QS世界大学排名的全流程分析,从数据爬取到可视化,覆盖了数据分析的核心环节。掌握这套思路后,你可以举一反三,分析其他排名(如泰晤士、U.S. News)或行业数据。

2025-12-14 16:50:42 975

原创 【3D图像技术分析与实现】Apple Vision Pro三维成像技术栈深度解析

Apple Vision Pro的三维成像技术栈,本质是“硬件极致堆料+软件深度优化”的协同产物——通过多模态传感器阵列确保数据采集的全面性,以专用芯片架构保障处理的实时性,靠全栈算法框架实现环境的精准理解。这种软硬件深度协同的设计,不仅定义了空间计算设备的三维成像标准,也为后续XR产品的技术演进提供了重要参考:三维成像的核心并非单一技术的突破,而是从感知到交互的全链路闭环优化。

2025-12-14 16:43:30 1145

原创 【图像处理基石】如何入门图像金字塔算法技术?

图像金字塔是计算机视觉领域核心的多尺度表示方法,通过对原始图像进行多分辨率缩放与重构,实现从全局到局部的特征分析。本文从基础概念出发,详解高斯金字塔与拉普拉斯金字塔的核心原理,结合OpenCV提供可直接运行的Python代码,并探讨其在目标检测、图像融合、图像压缩等主流场景的应用,适合图像处理入门者快速掌握核心技能。图像金字塔是一组以金字塔形式排列的分辨率递减图像集合,底部为原始高分辨率图像,向上逐层进行下采样(分辨率降低),顶部为低分辨率图像。

2025-12-13 23:54:18 697

原创 【深度学习新浪潮】SpaceX IPO引爆太空AI革命:技术发展与投资机会深度解析

SpaceX的IPO不仅是一家企业的上市,更是"太空AI"时代的启幕信号。当AI解决了航天的成本与效率难题,当太空提供了AI所需的无限算力,两个前沿领域的融合正创造出万亿级新市场。对于技术从业者而言,这是深耕专业的黄金赛道;对于投资者而言,聚焦具备核心技术壁垒与明确订单的企业,方能把握这场技术革命的历史性机遇。

2025-12-12 22:50:52 342

在本地部署deepseek模型的python代码实现

在本地部署deepseek模型的python代码实现。需要本地GPU支持。

2025-03-10

机器学习与模式识别领域的PRML习题解析手册

内容概要:本文档是由高正奇编辑的针对模式识别和机器学习(PRML)教科书的一份详细的解答手册。文档覆盖了从基本概念如误差函数求导、贝叶斯定理应用到多元高斯分布计算、Gamma函数积分及其性质等一系列复杂问题的解决方案,以及涉及线性模型分类的基础练习题、条件概率和联合概率计算等入门级习题。每一题都经过细致推导,帮助学生加深对机器学习相关概念的理解并掌握具体的数学方法。 适合人群:主要适用于正在攻读机器学习、模式识别相关课程的学生,以及从事数据科学工作的专业人士作为深入理解和实践指南。 使用场景及目标:本手册旨在辅助教学过程中遇到的具体难题解析,在研究和实践中作为参考资料进行理论验证和技术难点突破,尤其有助于准备考试或者项目实施时需要巩固知识的应用场合。 其他说明:书中题目涵盖广泛,既有直观的概率论应用,也有复杂的积分变换技巧和最优化思路展示,对于希望提高自身计算能力和解决实际问题能力的学习者非常有价值。但要注意的是,部分内容较为深奥,可能不适合初学者自学使用,最好配合课堂讲解或其他教材一起学习效果更佳。

2025-03-10

在TensorFlow中将预训练好的模型转换成tflite格式模型的python代码实现

在TensorFlow中将预训练好的模型转换成tflite格式模型的python代码实现。无需GPU即可。

2025-03-10

Pytorch中VIT架构的python实现

Pytorch中VIT架构的python实现

2025-03-10

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除