增量学习
azy1988
这个作者很懒,什么都没留下…
展开
-
基于知识蒸馏Knowledge Distillation模型压缩pytorch实现
在弄懂原理基础上,从本篇博客开始,逐步介绍基于知识蒸馏的增量学习、模型压缩的代码实现。毕竟“纸上得来终觉浅,绝知此事要躬行。”。先从最经典的Hilton论文开始,先实现基于知识蒸馏的模型压缩。相关原理可以参考博客:https://blog.csdn.net/zhenyu_an/article/details/101646943,既然基本原理是用一个已训练的teacher网络,去教会一个st...原创 2019-11-24 19:25:00 · 12697 阅读 · 12 评论 -
基于Knowledge Distillation的增量学习论文学习(之六)——Learning without Memorizing
这是CVPR 2019的论文,在我看来,一直到这篇文章,才算是对增量学习中一个基本问题进行了研究,那就是对于基于神经网络的增量学习而言,所谓的“灾难性遗忘”到底遗忘了啥?在前面几篇文章的分析中,作者大多都是给了一个较为笼统的解释,即遗忘了基于旧样本数据训练学到的模型知识,但这个知识如何表述,基本上是从蒸馏损失的角度出发来分析。在LwM这篇文章中,作者从网络得到的注意力区域图出发,重新定义了增...原创 2019-10-26 23:34:03 · 3397 阅读 · 7 评论 -
基于Knowledge Distillation的增量学习论文学习(之五)——Large Scale Incremental Learning
这是CVPR 2019的论文。旨在解决大规模增量学习的问题。 显然,作者在论文中主要解决的问题是大规模数据,首先理解下作者说的“大规模”增量学习是多大?从下图作者的实验结果可以看出,作者考量的,是在类别数发生几十甚至上百个的增加时算法的性能,事实上,作者展示的例子也显示,在类别总数100以内时,作者的方法相比原始LwF提升有限,但在类别总数达到上千甚至上万时,作者的方法显著优...原创 2019-10-23 00:12:35 · 1168 阅读 · 2 评论 -
基于Knowledge Distillation的增量学习论文学习(之四)——End-to-End Incremental Learning
这是ECCV2018的一个工作,提出了端到端的增量学习。动机:目前深度学习在处理增量学习问题时面临着“灾难遗忘”的问题,作者认为其主要原因是对新类别数据训练师,无法使用旧数据。为此,作者提出端到端增量学习,其思路是,选出一部分具有代表性的旧数据,与新类别数据组成训练集对模型进行更新训练。训练的损失函数包括两部分,对旧类别数据的蒸馏交叉损失,对新数据的交叉熵损失。 作者的认识:一个真正的增量深...原创 2019-10-13 23:03:40 · 1930 阅读 · 1 评论 -
基于Knowledge Distillation的增量学习论文学习(之二)——Learning without forgetting
本博客重点解析《Learning without forgetting》 Learning without forgetting(LwF)方法是比较早期(2017年PAMI的论文,说起来也不算早)将Knowledge Distillation与深度学习结合起来解决增量学习的工作,在该方法中,深度网络完全舍弃旧数据,而在新数据上进行训练。 作者将可能具有增量学习性能的方法...原创 2019-10-12 21:32:27 · 2219 阅读 · 0 评论 -
基于Knowledge Distillation的增量学习论文学习(之三)——iCaRL: Incremental Classifier and Representation Learning
这是CVPR 2017的一篇论文,发表以后一直作为IL的一个基准方法被引用。作者对增量学习的观点包括如下三点:(1)增量算法可以训练不同时间出现的新数据;(2)增量算法需在旧数据集中表现良好,即可以完美解决“灾难遗忘”问题;(3)计算能力与内存应该随着类别数的增加固定或者缓慢增量。乍看下来,与LwF算法没有太大区别,但因为第(3)条的存在,给作者开了一个口子,即可以存储一部分旧...原创 2019-10-19 20:16:03 · 1610 阅读 · 0 评论 -
基于Knowledge Distillation的增量学习论文学习(之一)
最近因为项目原因,研究使用增量学习。增量学习(incremental learning)是指一个学习系统能不断地从新样本中学习新的知识,并能保存大部分以前已经学习到的知识,增量学习非常类似于人类自身的学习模式。因为人在成长过程中,每天学习和接收新的事物,学习是逐步进行的,而且,对已经学习到的知识,人类一般是不会遗忘的。有时增量学习与持续学习(continual learning)、终生...原创 2019-09-28 23:40:49 · 3693 阅读 · 1 评论