- 博客(396)
- 资源 (19)
- 收藏
- 关注
原创 Java ScriptEngine 使用指南
是 Java Scripting API 的核心接口,用于在 Java 应用程序中执行各种脚本语言(如 JavaScript、Groovy、Python等)。提供了在 Java 中执行脚本的强大能力,适用于:动态配置和规则引擎插件系统模板渲染快速原型开发数学表达式计算通过合理使用 ScriptEngine,可以大大提高 Java 应用的灵活性和扩展性。
2025-12-10 16:57:05
385
原创 Spring SpEL包使用指南
/ 注册自定义函数// "olleh"@Override// 自定义读取逻辑@Override// 自定义读取实现包提供了强大的表达式语言功能,广泛应用于 Spring 的各个模块中。正确使用 SpEL 可以大大提高配置的灵活性和代码的动态性,但需要注意安全性和性能问题。
2025-12-10 10:53:24
259
原创 CKMAN:ClickHouse集群管理工具介绍
总而言之,CKMAN是ClickHouse生态中一个非常成熟和强大的运维管理工具。如果您正在考虑或已经在使用ClickHouse,并且希望提升集群的管理效率和可靠性,那么CKMAN绝对是一个值得深入研究和采用的选择。
2025-11-26 13:14:01
729
原创 DBeaver数据库管理工具介绍
DBeaver 是一款“瑞士军刀”式的数据库工具。它通过一个统一的、功能丰富的界面,解决了多数据库环境下的管理碎片化问题。其免费、开源、跨平台的特性,使其成为替代 Navicat、Toad、pgAdmin、MySQL Workbench 等单一数据库客户端的绝佳选择。无论你是初学者还是资深专家,DBeaver 都值得你下载并尝试,它很可能会成为你日常开发工作中不可或缺的得力助手。官方网站。
2025-11-26 10:02:39
768
原创 DolphinScheduler使用指南
Apache DolphinScheduler 是一个分布式、可扩展、可视化的开源大数据工作流调度系统。它解决了复杂数据依赖下的任务调度问题,旨在让数据工程师、分析师和数据科学家能够轻松地构建、管理、监控和调度各种数据处理任务(如数据采集、ETL、报表生成等)。核心特点:可视化工作流定义:通过拖拽式界面绘制复杂的任务依赖关系图(DAG)。强大的任务类型支持。
2025-11-24 10:32:00
151
原创 领域驱动设计DDD核心概念与实践
核心思想:DDD是一种通过将软件实现与不断演进的业务模型深度绑定,来应对复杂软件系统开发的方法论。它强调开发人员与领域专家(业务人员)紧密协作,通过通用语言来沟通,从而创造出对业务领域精准抽象的软件模型。解决什么问题:传统开发中,业务逻辑容易分散在代码的各个角落(如Controller, Service, DAO),导致代码随着业务复杂度的增加而变得难以理解和维护,最终形成“大泥球”架构。DDD提供了一套方法论和模式,帮助我们将业务复杂性封装在核心领域层,使软件更灵活、更易于响应业务变化。
2025-11-18 10:20:14
646
原创 过拟合与欠拟合原因及解决方法
方面欠拟合过拟合表现在训练集和测试集上都表现差在训练集上表现好,在测试集上表现差原因模型太简单、特征不足、训练不够模型太复杂、数据量少、训练过度、噪声多解决方向增加复杂度增加特征减少正则化简化模型增加数据加强正则化早停模型曲线无论是训练误差还是测试误差都较高训练误差很低,但测试误差很高类比学生没学好基础知识学生成了只会背答案的“书呆子”
2025-11-17 11:27:52
912
原创 HugeGraph数据库功能与应用场景介绍
HugeGraph是一款开源的、易用的、高性能的分布式图数据库。它最初由百度开发并开源,并于 2018 年贡献给Apache 软件基金会,于 2023 年 7 月正式毕业成为 Apache 顶级项目。它的核心设计目标是为处理海量复杂、互联的数据提供一套完整的解决方案,支持在线事务处理和在线分析处理。HugeGraph 是一个功能全面、性能强大、易于扩展的国产分布式图数据库。
2025-11-14 15:42:40
924
原创 Cassandra数据库全面解析
摘要:Cassandra是一个开源的分布式NoSQL数据库,结合了Amazon Dynamo和Google Bigtable的核心思想。其核心特性包括分布式架构、无单点故障、高可用性和最终一致性。采用查询驱动的数据模型,数据通过一致性哈希分布,写入过程高效但读取可能较复杂。优势在于高写入吞吐量和线性扩展能力,缺点是缺乏强一致性和复杂查询支持。适用于时序数据、消息平台等场景,是需要处理海量数据且接受最终一致性应用的理想选择。
2025-11-14 09:55:24
447
原创 信贷风控建设
监控服务:进件笔数,拒绝笔数,风控通过率,拒绝率,授信额度,规则命中情况等。决策引擎:决策流管理,决策流新增,编辑,上下线,分流,旁路,决策流审核。管理后台:权限管理,人员管理,决策流管理,规则集管理,指标,函数配置等。对接服务:数据引入,内外部字段配置,多租户产品配置,服务配置。指标平台:指标加工,指标累计,指标计算。特征平台:特征计算,特征衍生,特征存储。模型服务:模型日志,模型监控,模型审批。图谱服务:图谱关系,图计算,图神经网络。三方对接,名单服务,监控服务。规则引擎:规则集管理,配置。
2025-11-13 18:27:20
316
原创 信贷风控建设的多维意义解析
总而言之,信贷风控建设的意义远不止于“防止借钱不还”。它是一个多维度的价值创造中心对机构而言,它是利润的守护者和发展的引擎。对客户而言,它是负责任的保护者和公平的赋能者。对社会而言,它是金融稳定的基石和资源优化配置的导向标。因此,任何一家从事信贷业务的机构,都必须将风控建设置于战略核心地位,持续投入和优化。没有有效的风控,任何信贷业务的繁荣都将是空中楼阁。
2025-11-13 18:22:39
451
原创 KYC/AML系统功能与实现解析
构建一个强大的KYC/AML合规体系,是现代金融机构和特定非金融机构生存与发展的基石。它通过KYC系统精准地识别客户,并通过AML系统持续地监控行为,形成一个从“开户”到“终止关系”的全生命周期风险管理闭环。采购成熟的第三方解决方案为核心,结合自身业务进行深度定制和集成,并辅以专业的合规团队和持续优化的管理流程,从而在满足监管要求、控制风险与提升客户体验之间找到最佳平衡点。
2025-11-12 18:27:12
85
原创 虚拟货币交易所风控技术与实现方案
实时性:从风险发生到处置,延迟应在毫秒到秒级。准确性:平衡安全与用户体验,降低误报。可解释性:无论是规则还是模型,都需要能让运营人员理解“为什么被风控”。可扩展性:能快速接入新的数据源,部署新的风控策略。自适应:能够随着黑产手法的变化而不断进化。构建这样一套体系需要巨大的技术和资金投入。对于初创交易所,建议从最核心的规则引擎开始,优先解决资产盗取和基础作弊问题,再逐步引入机器学习和链上分析等高级能力,也可以考虑采购第三方成熟的风控解决方案来快速起步。
2025-11-12 17:07:31
58
原创 机器学习中有监督学习,无监督学习算法及应用
摘要: 有监督学习通过带标签的数据训练模型,用于分类(如垃圾邮件识别)和回归(如房价预测),典型算法包括线性回归、决策树、SVM等。无监督学习则从无标签数据中发现结构,主要任务包括聚类(如K-均值)、降维(如PCA)和关联规则挖掘(如购物篮分析)。两者对比:有监督依赖标签,目标明确;无监督探索数据内在模式。当前趋势倾向于结合两者的半监督和自监督学习(如BERT),以利用大量无标签数据提升模型性能。(149字)
2025-11-06 10:32:16
476
原创 应用与数据安全防护全解析
网络安全防护体系由应用安全、数据安全和安全防护工具三要素构成。应用安全强调开发过程的安全管控,包括代码安全、设计安全和配置安全等;数据安全聚焦全生命周期保护,涵盖加密、访问控制和备份恢复等;安全防护工具则提供具体技术手段,如SAST、WAF和DLP等。三者形成有机整体:应用安全是基础,数据安全是核心目标,安全工具是实现手段。现代安全实践建议采取"安全左移"、零信任架构和纵深防御等策略,构建自动化智能化的防护体系。
2025-11-06 09:48:09
742
原创 机器学习在风控与安全中的应用
机器学习在金融风控和网络安全领域发挥关键作用。在金融方面,通过监督和无监督学习实现欺诈交易检测、信贷风险评估等应用,利用多维数据分析复杂模式。网络安全方面,机器学习用于入侵检测、恶意软件识别等,通过异常检测识别未知威胁。当前面临对抗攻击、数据隐私等挑战,未来趋势包括图神经网络普及和智能自动化发展。机器学习正推动风控安全从被动防御转向主动智能预警,显著提升风险抵御能力。
2025-11-05 18:19:39
623
原创 实时离线风控系统建设
实时离线风控系统(通常我们称之为“实时风控”与“离线风控”相结合的体系)的建设,对于现代企业,特别是金融、电商、社交、游戏等领域,具有至关重要的战略意义。
2025-10-30 15:41:30
226
原创 实时离线风控系统建设的意义
建设实时离线相结合的风控系统,其根本意义在于将风控从一项被动的、成本高昂的“防御性开支”,转变为核心的业务竞争力、用户体验的保障者和业务创新的推动者。它不是简单的技术堆砌,而是一套将数据、算法、算力、业务知识深度融合的复杂系统工程,是现代数字化企业必须构建的核心基础设施。在黑产技术日益专业化、团伙化的今天,没有这样一套体系,企业就如同在“裸奔”,将直接暴露在巨大的财务和信誉风险之下。
2025-10-30 15:36:24
721
原创 LLaVA大模型功能与原理介绍
方面描述核心定位一个将视觉与语言能力结合的大型多模态模型。类比“带眼睛的 ChatGPT”。主要输入图片文本问题/指令。主要输出文本回答,包括描述、推理、分析、创作等。技术核心将视觉编码器与大语言模型巧妙连接,实现跨模态理解。主要价值让人机交互更自然,使 AI 能像人一样“看图说话”和“视觉思考”。LLaVA 是开源多模态领域的一个里程碑式的模型,它证明了用相对简单的方法连接视觉和语言模型,就能产生强大的理解和推理能力。
2025-10-27 10:56:47
424
原创 RagFlow与Dify功能对比分析
维度RagFlowDify核心定位专精于 RAG 的文档智能工具通用型 AI 应用开发与编排平台一句话描述一个专注于解决“基于文档的智能问答”痛点的工具,强调从复杂文档中精准提取信息。一个让开发者和小白都能快速构建、部署和运营 AI 应用(包括但不限于 RAG、Agent、文本生成等)的操作系统。背后公司百度硅基流动(初创公司)工具优点缺点RagFlow文档解析能力顶尖;RAG 流程精细可控;引用溯源精准;专精领域表现卓越。应用场景相对单一;工作流编排能力不如 Dify 强大。Dify。
2025-10-27 10:28:07
602
原创 c.xxl.job.core.log.XxlJobFileAppender : No such file or directory
XXL-Job任务日志写入失败常见原因及解决方案 摘要:XXL-Job任务日志写入失败通常由日志目录不存在或权限不足导致。解决方案包括:1.创建日志目录并设置权限(如/data/applogs/xxl-job/);2.检查配置文件中的日志路径设置;3.使用相对路径或用户目录;4.检查磁盘空间和文件权限。预防措施建议在启动脚本中自动创建目录,Docker部署时确保卷挂载,或在应用启动时检查目录存在性。常见日志目录路径包括/data/applogs/xxl-job/和/tmp/xxl-job/。
2025-10-17 16:06:20
491
原创 com.aerospike.client.AerospikeException: Error 13,1,BB993ED3E3E1600 100.0.0.23 3000: Record too big
Aerospike的max-record-size参数用于限制单条记录的最大存储空间(包括key和bin数据)。配置步骤:1)编辑/etc/aerospike/aerospike.conf文件;2)在目标namespace块中添加max-record-size值(需小于write-block-size);3)重启服务使配置生效。默认值在5.0+版本为1MiB,旧版为128KiB。注意:值单位为字节,配置错误会导致写入失败并返回AEROSPIKE_ERR_RECORD_TOO_BIG错误。修改后可通过asad
2025-09-24 16:15:30
559
原创 drools规则排序关键字
Drools规则引擎通过salience属性控制规则执行优先级,数值越大优先级越高。除salience外,规则顺序还受条件特异性、冲突解决策略(如Recency、Complexity)和流程控制(activation-group、ruleflow-group)影响。最佳实践建议合理使用salience,优先优化规则条件设计,必要时结合分组控制机制,并注意RHS操作会触发重新匹配规则。注释说明和替代方案选择能提升规则集的可维护性。
2025-09-17 09:57:28
894
原创 信贷风控与一般交易支付风控的区别
信贷风控侧重长期信用评估,核心解决"借款人未来能否还款"问题,依赖征信、收入等强金融数据,决策周期较长。交易支付风控聚焦瞬时欺诈识别,解决"当前交易是否合法"问题,依据实时交易特征,需在毫秒级完成判断。前者像HR面试官综合评估资质,后者似安检系统快速筛查风险。二者在数据、技术上正逐步融合:支付数据可补充信用评估,风控技术可相互借鉴,共同构成金融安全防护体系。
2025-09-16 18:23:13
862
原创 如何系统化地进行技术分享
技术分享是提升团队能力的关键方法。本文系统介绍了打造高效技术分享的完整方案:1.明确分享目标(知识传承、问题复盘等5类);2.设计7种分享形式(定期会议、闪电演讲等);3.构建"选题-准备-分享-沉淀-激励"闭环流程;4.提供实用技巧(聚焦主题、代码演示等);5.规避常见误区。通过多元化形式、系统化流程和有效激励,可把技术分享转化为团队成长的持续动力。
2025-09-16 17:26:42
725
原创 区块链知识
区块链是一种去中心化、不可篡改的分布式账本技术,由按时间顺序连接的区块组成。其核心特点包括去中心化、分布式存储和不可篡改性。区块链通过密码学(哈希函数、非对称加密)、共识机制(如PoW、PoS)和智能合约等技术实现安全可靠的价值传递。主要类型包括公有链、联盟链和私有链。应用领域除加密货币外,还涵盖DeFi、NFT、供应链管理等多个场景。但区块链仍面临"不可能三角"、可扩展性、能耗等挑战。这项技术有望重塑信任机制,成为价值互联网的基础协议。
2025-09-11 17:14:38
935
原创 国外信贷与国内信贷业务及风控方面的区别
国外信贷与国内信贷在业务模式和风险控制上存在显著差异,这些差异根植于不同的经济环境、监管框架、文化习惯和技术发展水平。
2025-08-27 17:36:55
1032
原创 Metabase是什么
Metabase 是一个开源的数据分析和商业智能(BI)工具。它的核心使命是让公司中的每个人,即使不具备专业的技术背景(如不懂 SQL),都能轻松地访问、探索和理解他们业务中的数据,从而做出数据驱动的决策。您可以把它想象成一个连接您的数据库、并提供一个友好界面(类似于“数据问答机”)的工具,让您可以通过点击和简单的输入来生成图表和报告。总而言之,Metabase 是一个旨在 democratize data(数据民主化)的工具。
2025-08-22 11:19:31
1097
原创 redis每种数据结构对应的底层数据结构原理
Redis 的每种数据结构(String、List、Hash、Set、Sorted Set)在底层都采用了不同的实现方式,根据数据规模和特性动态选择最优的编码(encoding)以节省内存和提高性能。
2025-07-04 12:09:24
691
原创 助贷业务特征工程
助贷业务的特征工程是一个复杂、动态且高度依赖数据合规的过程。它不仅仅是技术活,更需要深入理解业务逻辑、资金方需求、风险类型和监管要求。成功的特征工程能够构建起强大的风险识别能力和精准的资金匹配能力,是助贷平台核心竞争力的重要组成部分。务必在追求模型效果的同时,将合规性、可解释性和稳定性放在首要位置。
2025-06-24 09:52:46
719
原创 什么是助贷业务
助贷业务是指金融机构(如银行、消费金融公司等)与第三方助贷机构合作,由助贷机构为金融机构提供获客、风控初筛、贷后管理等服务,最终由金融机构发放贷款的业务模式。:科技公司、流量平台或垂直领域服务商(如电商、社交平台),负责获客、初步风控等。助贷机构参与风控(如提供用户画像、反欺诈筛查),资金方做最终审批。助贷机构利用大数据(征信、行为数据等)预筛客户,资金方再做终审。:持牌金融机构(银行、信托、消金公司等),提供资金并承担风险。:乐信(分期电商)、信也科技(P2P转型助贷)。
2025-06-11 13:29:38
2018
原创 anaconda3如何切换虚拟环境
在Anaconda3中切换虚拟环境可以通过命令行或Anaconda Navigator图形界面实现。命令行方法推荐使用:首先通过conda env list查看所有虚拟环境,然后使用conda activate 环境名激活目标环境,验证切换成功后,可使用conda deactivate退出当前环境。Anaconda Navigator方法则通过图形界面选择环境并操作。常见问题包括环境路径冲突和环境未列出,可通过指定用户目录安装环境或检查环境创建情况解决。总结:激活环境使用conda activate 环境名
2025-05-15 13:38:42
1224
原创 LightGBM算法原理及实例
高效性能:直方图算法和Leaf-wise生长策略大幅提升训练速度低内存使用:特征离散化和并行优化减少内存消耗准确率高:GOSS和EFB等创新保持甚至提升模型精度支持并行:特征并行和数据并行优化广泛适用:支持分类、回归、排序等多种任务LightGBM已成为机器学习竞赛和工业界的主流工具之一,特别适合处理大规模数据和高维特征场景。
2025-05-06 14:13:56
958
原创 JVM堆的分代机制
Java虚拟机的堆内存采用,将堆划分为不同的区域,以便更高效地管理内存和进行垃圾回收。:绝大多数对象都是"朝生夕死"的:跨代引用相对于同代引用来说只是极少数。
2025-05-06 11:39:03
550
原创 可检查异常与不可检查异常
/ 不处理NullPointerException(运行时异常)也能编译。:通常是代码逻辑问题(如空指针、数组越界)或系统级错误(如内存溢出)。:通常是程序外部因素导致的、可预见的错误(如文件不存在、网络中断)。:即使不捕获或声明,代码也能编译通过(但运行时可能崩溃)。:通过代码检查预防(如判空、校验参数),而非盲目捕获。// 必须处理IOException(可检查异常):强制开发者关注并处理可能的外部故障,提升健壮性。:优先捕获并尝试恢复,或转换为用户友好提示。及其子类),编译器强制要求处理。
2025-05-06 10:22:32
409
原创 脏读、不可重复读、幻读示例
- 账户1扣除100元,未提交。-- 第二次读取,返回900(与第一次不同)-- 第二次查询返回3条记录(出现幻行)-- 新增一个高余额账户。-- 读取到未提交的修改(脏读)-- 第一次查询返回2条记录。-- 第一次读取,返回1000。-- 事务A回滚,但事务B已经读取了错误的数据。
2025-04-30 10:39:02
505
原创 系统设计中三高指什么
指系统能够同时处理大量用户请求的能力。关键技术:线程池、异步处理、消息队列、负载均衡等。例如:秒杀系统需应对瞬时流量高峰。系统在出现故障时仍能持续提供服务,通常通过冗余和容错实现。关键指标:SLA(如99.99%可用性,全年停机≤52分钟)。技术:多节点部署、故障转移(Failover)、心跳检测、熔断降级等。系统能快速处理请求,低延迟、高吞吐量。优化方向:缓存(Redis)、CDN、数据库索引、代码效率等。例如:数据库分库分表减少查询时间。
2025-04-29 15:43:49
509
超精美工作总结汇报PPT模板.pptx
2019-11-27
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅