Python分解质因数,最大公约数,最小公倍数

这篇博客分享了作者在解决质因数分解、求最大公约数(GCD)和最小公倍数(LCM)问题时的心路历程,通过不断尝试和优化,最终得出了一种高效的算法实现。
摘要由CSDN通过智能技术生成

为了解决以上三个问题,经过一番折腾,各种解法,最后得到一个还算优化的算法:

# author:Linger


'''
        求两个数的最小公倍数,最大公约数,分解质因数
概念:质数是一个大于1的自然数,除了1和它本身外,不能整除以其他自然数.
    公因数是给定若干个整数,如果如果有一个(些)数是它们共同的因数,
    那么这个(些)数就叫做它们的公因数.由以上概念可知:两个质数是有
    公因数的,1和-1都是.最大公因数是1.
'''

def getdiv(n = 36):
    '''
    :param n: 你要求取质因数的整数
    :return: 返回质因数数列
    '''
    i = 2
    _div =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值