洛谷T411074岛屿面积最大差值

题目描述

用一个M行N列的矩形网格表示某群岛疆域的地形图,每个小格子里都有一个数字1或者0,其中,0表示海水(蓝色),1表示陆地(绿色),并且矩形网格之外的部分都为海水。每个小格子面积为1,已知每个岛屿都是由1个或多个竖直或水平相邻的陆地小格子组成(斜向不算相邻),且周围都是海水。那么请你计算图中面积最大的岛屿与面积最小的岛屿之间的面积差值。

例如:M=6,N=8时,群岛疆域示意文如下:

0 0 0 0 1 0 1 1
1 1 1 0 0 0 0 1
0 1 0 0 1 0 0 0
0 0 1 1 1 0 1 1
0 0 0 1 1 0 1 0
0 0 0 1 0 0 1 0

其中,有5个岛屿,面积分别是1,3,4,7,4,最大的岛屿面积是7,最小的岛屿面积是1,面积差是7-1=6。

输入格式

第一行输入两个正整数M和N(3<=M<=1000,3<=N<=1000),表示网格行数与列数,两数之间用一个空格隔开。 接下来输入M行,每行n个整数,表示地形图(1表示陆地,0表示海水),两个整数之间用一个空格隔开。

输出格式

输出一个整数,表示面积最大的岛屿与面积最小的岛屿之间的面积差。

废话不多说;上代码

#include<bits/stdc++.h>
using namespace std;
int a[1050][1050];
int n,m,cnt;
int ma=0,mi=1e6+20;
int flag[9]={0,-1,1,0,0,0,0,-1,1};
void dfs(int x,int y){
	a[x][y]=0;
	cnt++;
	for(int i=1;i<=4;i++){
		int tx=x+flag[i];
		int ty=y+flag[i+4];
		if(a[tx][ty]==1&&tx>=1&&tx<=n&&ty>=1&&ty<=m){
			dfs(tx,ty);
		}
	}
}
int main(){
	cin>>n>>m;
	for(int i=1;i<=n;i++){
		for(int j=1;j<=m;j++){
			cin>>a[i][j];
		}
	}
	for(int i=1;i<=n;i++){
		for(int j=1;j<=m;j++){
			if(a[i][j]==1){
				cnt=0;
				dfs(i,j);
				ma=max(ma,cnt);
				mi=min(mi,cnt);
			}
		}
	}
	cout<<ma-mi;
	return 0;
}

### 计算二维网格中岛屿最大面积 为了计算二维网格中岛屿最大面积,可以基于广度优先搜索 (BFS) 或深度优先搜索 (DFS) 的思路来解决问题。以下是完整的解决方案及其解释。 #### 算法描述 1. 遍历整个二维网格中的每一个单元格。 2. 如果遇到一个尚未访问过的陆地 (`'1'`) 单元格,则启动 DFS/BFS 来探索与此单元格相连的所有陆地,并记录下这些连通区域的总面积。 3. 使用一个辅助数据结构(如布尔型二维数组或原地标记)来标记已访问过的单元格,防止重复计数。 4. 在遍历过程中维护一个变量 `maxArea`,用于存储当前找到的最大岛屿面积。 #### 完整代码实现 以下是一个使用 DFS 方法实现的 JavaScript 代码: ```javascript function maxAreaOfIsland(grid) { const rows = grid.length; if (rows === 0) return 0; // 边界条件判断 const cols = grid[0].length; function dfs(r, c) { if (r < 0 || r >= rows || c < 0 || c >= cols || grid[r][c] !== '1') { return 0; // 越界或者不是陆地则返回0 } let area = 1; // 当前节点计入面积 grid[r][c] = '0'; // 将当前位置标记为已访问过 // 向四个方向扩展 area += dfs(r - 1, c); // 上方 area += dfs(r + 1, c); // 下方 area += dfs(r, c - 1); // 左侧 area += dfs(r, c + 1); // 右侧 return area; } let maxArea = 0; for (let i = 0; i < rows; i++) { for (let j = 0; j < cols; j++) { if (grid[i][j] === '1') { // 发现新的岛屿起点 const currentArea = dfs(i, j); maxArea = Math.max(maxArea, currentArea); // 更新最大面积 } } } return maxArea; } ``` 上述代码通过递归的方式实现了深度优先搜索逻辑[^1]。每次发现一个新的 `'1'` 时,都会调用 `dfs()` 函数去探索其周围的连通部分并累加面积。 #### BFS 版本实现 如果更倾向于迭代方式而非递归,也可以改写成基于队的广度优先搜索版本: ```javascript function maxAreaOfIsland(grid) { const rows = grid.length; if (rows === 0) return 0; const cols = grid[0].length; const directions = [[-1, 0], [1, 0], [0, -1], [0, 1]]; // 方向数组表示上下左右移动 function bfs(r, c) { const queue = []; queue.push([r, c]); grid[r][c] = '0'; // 标记为已访问 let area = 0; while (queue.length > 0) { const [row, col] = queue.shift(); area++; // 每次弹出都增加面积 for (const [dr, dc] of directions) { const newRow = row + dr; const newCol = col + dc; if ( newRow >= 0 && newRow < rows && newCol >= 0 && newCol < cols && grid[newRow][newCol] === '1' ) { queue.push([newRow, newCol]); // 加入新位置到队 grid[newRow][newCol] = '0'; // 标记为已访问 } } } return area; } let maxArea = 0; for (let i = 0; i < rows; i++) { for (let j = 0; j < cols; j++) { if (grid[i][j] === '1') { const currentArea = bfs(i, j); maxArea = Math.max(maxArea, currentArea); } } } return maxArea; } ``` 此版本利用了一个来进逐层扩散的操作[^5],同样能够有效解决该问题。 #### 复杂度分析 - 时间复杂度:O(m * n),其中 m 和 n 分别代表矩阵的高度和宽度。每个单元格最多只会被访问一次。 - 空间复杂度:取决于使用的搜索策略以及输入规模,在最坏情况下可能达到 O(m * n)。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值