这题是上凸形,
题目当中,还是要注意括号的问题。。因为括号套错了一层RE了好几次
关于,斜率优化,感觉一般的常数项,和i有关的就都放在右边吧,比如已知的那些常量,由此尽量保证左边的上下分子分母都是正的应该是好处理吧
感觉:斜率优化,推出的方程,是大于号,那么上凸,维护斜率递减。
小于号,下凸,维护斜率递增
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<algorithm>
using namespace std;
typedef long long ll;
ll s[2000020],dp[2000050],a,b,c;
int q[2000050],head,tail,n;
ll getup(int j,int k)
{
return (dp[j]+s[j]*s[j]*a-s[j]*b)-
(dp[k]+s[k]*s[k]*a-s[k]*b);
}
ll getdown(int j,int k)
{
return (s[j]-s[k]);
}
ll getdp(int i,int k)
{
ll x=s[i]-s[k];
return dp[k]+x*x*a+x*b+c;
}
int main()
{
scanf("%d",&n);
scanf("%lld%lld%lld",&a,&b,&c);
for (int i=1;i<=n;i++) scanf("%lld",&s[i]);
for (int i=1;i<=n;i++) s[i]+=s[i-1];
head=tail=1;
q[1]=0;
for (int i=1;i<=n;i++)
{
while (head<tail &&
getup(q[head+1],q[head])>=a*2*s[i]*getdown(q[head+1],q[head])) head++;
dp[i]=getdp(i,q[head]);
while (head<tail &&
getup(i,q[tail])*getdown(q[tail],q[tail-1])
>=getup(q[tail],q[tail-1])*getdown(i,q[tail])
) tail--;
q[++tail]=i;
}
printf("%lld",dp[n]);
return 0;
}