题目描述
HH 有一串由各种漂亮的贝壳组成的项链。HH 相信不同的贝壳会带来好运,所以每次散步完后,他都会随意取出一段贝壳,思考它们所表达的含义。HH 不断地收集新的贝壳,因此,他的项链变得越来越长。
有一天,他突然提出了一个问题:某一段贝壳中,包含了多少种不同的贝壳?这个问题很难回答…… 因为项链实在是太长了。于是,他只好求助睿智的你,来解决这个问题。
输入格式
一行一个正整数 n,表示项链长度。
第二行 n 个正整数 ai,表示项链中第 i 个贝壳的种类。
第三行一个整数 m,表示 HH 询问的个数。
接下来 m 行,每行两个整数 l,r,表示询问的区间。
输出格式
输出 m 行,每行一个整数,依次表示询问对应的答案。
输入输出样例
输入 #1复制
6 1 2 3 4 3 5 3 1 2 3 5 2 6
输出 #1复制
2 2 4
解析:
我们离线查询的它的答案。
如何离线呢?
答:我们排序的查询的右端点。用线段树进行上次它前面出现的相同的数,并且记录前面出现的最后一次的下角标。
比如:有数组 4 1 2 3 4
小标 为 1 2 3 4 5
那么他们当遍历到 第5个小标的时候我们要清楚第 【1,1】个区间 sum值使它为 0。这样子就可以保证不重复。 在利用 线段树求区间的和。
用 vector<int> v [N ] 记录 的当右端点为 i的 情况下,存储它的第几次询问的小标。
代码如下:
// 线段树+离线处理查询
#include <iostream>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;
#define N 1000005
#define ls u<<1
#define rs u<<1|1
int n,m;
struct tree{
int l,r,sum;
}tr[N*4]; //线段树
struct node{
int l,r,id;
bool operator<(node &b){
return r<b.r;
}
}q[N]; //查询
vector<int> v[N]; //右端点相同的查询
int a[N],last[N],ans[N];
void pushup(int u){ //上传
tr[u].sum=tr[ls].sum+tr[rs].sum;
}
void build(int u,int l,int r){ //建树
tr[u]={l,r,1};
if(l==r) return;
int m=l+r>>1;
build(ls,l,m);
build(rs,m+1,r);
pushup(u);
}
void change(int u,int x){ //点修
if(tr[u].l==x&&tr[u].r==x){
tr[u].sum=0; return;
}
int m=tr[u].l+tr[u].r>>1;
if(x<=m)
change(ls,x);
else
change(rs,x);
pushup(u);
}
int query(int u,int x,int y){ //区查
if(x>tr[u].r || y<tr[u].l)
return 0;
if(x<=tr[u].l&&tr[u].r<=y)
return tr[u].sum;
return query(ls,x,y)+query(rs,x,y);
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
scanf("%d",&m);
for(int i=1;i<=m;i++){
scanf("%d%d",&q[i].l,&q[i].r);
q[i].id=i; //每个查询的编号
}
sort(q+1,q+m+1); //按查询右端点排序
for(int i=1;i<=m;i++)
v[q[i].r].push_back(i); //右端点相同的查询 二维的
build(1,1,n);
//什么时候消失
for(int i=1;i<=n;i++){ //枚举每个数
if(last[a[i]]){
change(1,last[a[i]]);
}
last[a[i]]=i; //记录ai最后一次的下标
for(auto t : v[i]) //处理右端点i的查询
ans[q[t].id] = query(1,q[t].l,q[t].r);
}
for(int i=1;i<=m;i++)
printf("%d\n",ans[i]);
return 0;
}
时间复杂度:O(N*logn)