P1972 [SDOI2009] HH的项链(线段树+离线做法+排序)

题目描述

HH 有一串由各种漂亮的贝壳组成的项链。HH 相信不同的贝壳会带来好运,所以每次散步完后,他都会随意取出一段贝壳,思考它们所表达的含义。HH 不断地收集新的贝壳,因此,他的项链变得越来越长。

有一天,他突然提出了一个问题:某一段贝壳中,包含了多少种不同的贝壳?这个问题很难回答…… 因为项链实在是太长了。于是,他只好求助睿智的你,来解决这个问题。

输入格式

一行一个正整数 n,表示项链长度。
第二行 n 个正整数 ai​,表示项链中第 i 个贝壳的种类。

第三行一个整数 m,表示 HH 询问的个数。
接下来 m 行,每行两个整数 l,r,表示询问的区间。

输出格式

输出 m 行,每行一个整数,依次表示询问对应的答案。

输入输出样例

输入 #1复制

6
1 2 3 4 3 5
3
1 2
3 5
2 6

输出 #1复制

2
2
4

解析:

我们离线查询的它的答案。

如何离线呢?

答:我们排序的查询的右端点。用线段树进行上次它前面出现的相同的数,并且记录前面出现的最后一次的下角标。

比如:有数组 4  1  2  3  4

小标 为          1   2  3  4  5

那么他们当遍历到 第5个小标的时候我们要清楚第 【1,1】个区间 sum值使它为 0。这样子就可以保证不重复。 在利用 线段树求区间的和。

用 vector<int> v [N ]  记录 的当右端点为 i的 情况下,存储它的第几次询问的小标。

代码如下:

// 线段树+离线处理查询
#include <iostream>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;

#define N 1000005
#define ls u<<1
#define rs u<<1|1
int n,m;
struct tree{
  int l,r,sum;
}tr[N*4];   //线段树
struct node{
  int l,r,id;
  bool operator<(node &b){
    return r<b.r;
  }
}q[N];      //查询
vector<int> v[N]; //右端点相同的查询
int a[N],last[N],ans[N];

void pushup(int u){ //上传
  tr[u].sum=tr[ls].sum+tr[rs].sum;
}
void build(int u,int l,int r){ //建树
  tr[u]={l,r,1};
  if(l==r) return;
  int m=l+r>>1;
  build(ls,l,m);
  build(rs,m+1,r);
  pushup(u);
}


void change(int u,int x){ //点修
  if(tr[u].l==x&&tr[u].r==x){
    tr[u].sum=0; return;
  }
  int m=tr[u].l+tr[u].r>>1;
  if(x<=m) 
  	change(ls,x);
  else 
  	change(rs,x);
  pushup(u);
}


int query(int u,int x,int y){ //区查
  if(x>tr[u].r || y<tr[u].l) 
  	return 0;
  if(x<=tr[u].l&&tr[u].r<=y) 
  	return tr[u].sum;
  return query(ls,x,y)+query(rs,x,y);
}


int main(){
  scanf("%d",&n);
  for(int i=1;i<=n;i++) 
  	scanf("%d",&a[i]);
  scanf("%d",&m);
  for(int i=1;i<=m;i++){
    scanf("%d%d",&q[i].l,&q[i].r);
    q[i].id=i; //每个查询的编号
  }
  sort(q+1,q+m+1); //按查询右端点排序
  
  
  for(int i=1;i<=m;i++)
    v[q[i].r].push_back(i); //右端点相同的查询  二维的  
  
  build(1,1,n);
  //什么时候消失  
  for(int i=1;i<=n;i++){ //枚举每个数
    if(last[a[i]]){
		change(1,last[a[i]]);
	}
    last[a[i]]=i; //记录ai最后一次的下标
    
    for(auto t : v[i]) //处理右端点i的查询
      ans[q[t].id] = query(1,q[t].l,q[t].r);
  }
  
  for(int i=1;i<=m;i++) 
  	printf("%d\n",ans[i]);
  return 0;
}

 时间复杂度:O(N*logn)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值