回溯
10 .复原IP地址
class Solution {
public:
vector<string> restoreIpAddresses(string s) {
result.clear();
if (s.length() < 4 || s.length() > 12) {
return result;
}
backtracking(s, 0, 0);
return result;
}
private:
vector<string> result;
bool isVaild(string &s, int start, int end) {
if (start > end) return false;
// 1. 字符只能是整数
for (int i = start; i <= end; i++) {
if (s[i] < '0' || s[i] > '9') return false;
}
// 2. 数字的开头不能是 0
if (s[start] == '0' && start != end) return false;
// 3. 数字需要小于 255
int num = 0;
for (int i = start; i <= end; i++) {
num *= 10;
num += s[i] - '0';
}
std::cout << "num = " << num << std::endl;
if (num > 255) return false;
return true;
}
void backtracking(string &s, int startIndex, int cnt) {
if (cnt == 3) {
if (isVaild(s, startIndex, s.size() - 1)) {
result.push_back(s);
}
return ;
}
for (int i = startIndex; i < s.size(); i++) {
if ((i - startIndex <= 2) && isVaild(s, startIndex, i)) {
s.insert(s.begin() + i + 1, '.');
backtracking(s, i + 2, cnt + 1); // i+2 是因为要再往后移动一位到 ‘.’ 后面
s.erase(s.begin() + i + 1);
} else {
break;
}
}
}
};
11. 子集问题
思路:
由于题目说了没有重复的元素,所以不用考虑去重。
利用循环遍历每一层的所有元素,利用递归获取所有结果。使用一个startIndex索引指向下一个元素,保证每一次递归都不会重复访问。
class Solution {
public:
vector<vector<int>> subsets(vector<int>& nums) {
backtracking(nums, 0);
return result;
}
private:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& nums, int startIndex) {
result.push_back(path);
if (startIndex >= nums.size()) return ;
for (int i = startIndex; i < nums.size(); i++) {
path.push_back(nums[i]);
backtracking(nums, i + 1);
path.pop_back();
}
}
};
12. 子集II
思路:
这次出现重复元素了,需要考虑去重问题。
根据下图可以看出,为了避免重复,还要选出所有可能的情况,同一树层不允许使用之前出现过的元素以去重,而第一次出现的有重复元素的结果会在前面的树枝中出现并被获取。从而实现不重不漏。
class Solution {
public:
vector<vector<int>> subsetsWithDup(vector<int>& nums) {
result.clear();
path.clear();
vector<bool> used(nums.size(), false);
sort(nums.begin(), nums.end());
backtracking(nums, 0, used);
return result;
}
private:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& nums, int startIndex, vector<bool>& used) {
result.push_back(path);
if (startIndex >= nums.size()) return ;
for (int i = startIndex; i < nums.size(); i++) {
if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {
continue;
}
path.push_back(nums[i]);
used[i] = true;
backtracking(nums, i + 1, used);
used[i] = false;
path.pop_back();
}
}
};