三个策略:
1、先从中心点开始走;
2、往靠边走;
3、对下一步进行评分,低分的先走。
/* 马周游问题,m*n的棋盘,放置在其上的马能否恰好访问每一个方格一次并回到起始位置 深度优先搜索,若寻找到满足要求的解,则输出;否则推回上一层往下一个方向搜索。(非递归) 对于当前所在位置(x,y),依次枚举8个方向搜索,直到找到一组可行解为止。 使用剪枝有3处: 第一、使用Warnsdorff's rule,枚举当前解得时候优先选择下一步可行步数最少的方向; 第二、若第一点中的方向存在不止一个,则优先选择离中心位置较远的方向; 第三、每次都从中心点开始出发,求出一条合法路径后再平移映射回待求路径。 */
#include<iostream> #include<ctime> #include<cstdlib> #include<iomanip> #include<algorithm>//sort()函数头文件 using namespace std; int m,n;//棋盘大小设置为m*n int midx,midy;//计算棋盘的中心坐标 int dirx[8]={-2,-1,2,1,-2,-1,2,1};//x,y表示马在棋盘中跳步 int diry[8]={-1,-2,-1,-2,1,2,1,2};//左上->左下->右上->右下 int num;//计数器,记录步数 bool visit[10][10];//标志是否游历 int chessboard[10][10];//棋盘存放跳马的顺序 int direction[100],bn[100];//方向组数为10*10,因此该马周游的棋盘最大为10*10 struct Node { int x, y; Node(int xx = 0, int yy = 0):x(xx), y(yy) {}//构造函数 }BeforeStep[100];//存放前一步坐标 struct Data {//存放坐标及出口数 int x, y, c; Data(int xx = 0, int yy = 0, int cc = 0):x(xx), y(yy), c(cc) {} bool operator < (const Data & b) const {//比较出口数时,以出口数为参考值 if (c != b.c) return c < b.c;//当出口数不等时,返回小于 return abs(x - midx) + abs(y - midy) > abs(b.x - midx) + abs(b.y - midy);//当出口数相等时,返回距离中点最远的出口 } }b[100][8], *tb; bool check(int x, int y) //检查出路是否符合要求 { if (x < 1 || x > n || y < 1 || y > n) return 0;//检查是否超出棋盘 if (visit[x][y]) return 0;//是否已经走过 return 1; } bool find(int x, int y) //判断最后的坐标能否返回起点 { for (int i = 0; i < 8; ++i) if (x + dirx[i] == midx && y + diry[i] == midy)//最后回到起点 return 1; return 0; } bool travel(int x,int y) { int i,j,change,nx,ny,mx,my,ndir; num=1;//记录走的步数 visit[x][y]=1; chessboard[x][y]=0; BeforeStep[num]=Node(x,y); direction[num]=-1; while(num) { if(num==m*n && find(BeforeStep[num].x,BeforeStep[num].y))//num=m*n且能回到起点,则完成 return true; if(num == m*n)//1、走完棋盘,却不能回到起点则剪枝 { visit[BeforeStep[num].x][BeforeStep[num].y]=0; --num; } else if(direction[num]==-1)//2、检查当前坐标每一个方向的出口数 { x=BeforeStep[num].x; y=BeforeStep[num].y; change=0; tb=b[num]; for(i=0;i<8;++i)//依次走8个方向 { nx=x+dirx[i]; ny=y+diry[i]; if(!check(nx,ny)) continue; ndir=0;//出口数 for(j=0;j<8;++j) { mx=nx+dirx[j]; my=ny+diry[j]; if(check(mx,my)) ++ndir; } tb[change++]=Data(nx,ny,ndir);//存储当前每一方向的情况 } if (change) {//对下一步的坐标进行选择,出口少的优先选择 bn[num] = change;//每一步可以选择的出口数 sort(tb, tb + change);//存储下一步坐标,以及对该坐标路数(tb[tbn])进行升序排序 tb = b[num]; i = ++direction[num]; visit[ tb[0].x ][ tb[0].y ] = 1; chessboard[ tb[0].x ][ tb[0].y ] = num; BeforeStep[++num] = Node(tb[0].x, tb[0].y);//记录前一步的坐标 direction[num] = -1;//初始化下一步坐标 } else {//如果下一步的出口数为0则剪枝 visit[ BeforeStep[num].x ][ BeforeStep[num].y ] = 0; --num; } } else if (direction[num] == bn[num] - 1) {//3、无路可走时,则剪枝 visit[ BeforeStep[num].x ][ BeforeStep[num].y ] = 0; --num; } else {//4、剪枝后,接着走下一方向的路 tb = b[num]; i = ++direction[num]; visit[ tb[i].x ][ tb[i].y ] = 1; chessboard[ tb[i].x ][ tb[i].y ] = num; BeforeStep[++num] = Node(tb[i].x, tb[i].y); direction[num] = -1; } } return 0; } void output(int Sx,int Sy)//将棋盘的数值映射回对应的起点坐标并输出 {/*原理:比如1、2、3、4四个数,如果是2开始的,则运用映射将2转变为1,原先的1变为4,路径还是不变的*/ int k; k=m*n-chessboard[Sx][Sy];//计算对应的映射参数(m*n-1) for(int i=1;i<=m;i++) { cout<<endl; for(int j=1;j<=n;j++) { chessboard[i][j]=(chessboard[i][j]+k)%(m*n)+1; cout<<setw(8)<<chessboard[i][j]; } cout<<endl; } } void main() { int Sx,Sy;//起始位置 cout<<"Input the chessboard size(m*n):";//棋盘为长方形 cin>>m>>n; midx=m/2; midy=n/2;//计算中心坐标 bool flag=true; time_t start,end;//计算时间的开始和结束 cout<<"The size of chessboard:"<<m<<"*"<<n<<";"<<endl; while(flag) { cout<<"Input the start position(Sx,Sy):"<<endl; cin>>Sx>>Sy; if(Sx>m||Sx<1||Sy>n||Sy<1) cout<<"Error!"<<endl;//输入不符合棋盘需要重新输入 else flag=false; } flag=false; start=clock(); flag=travel(midx,midy);//调用深度遍历算法 end=clock(); cout<<"The program is running..."<<endl; if(flag==true) output(Sx,Sy); else cout<<"no solution!"<<endl; cout<<endl; cout<<"It's cost time:"<<difftime(end,start)<<"ms"<<endl;//输出算法所需要的时间 }
The knight\'s tour(马周游问题)
最新推荐文章于 2022-11-04 12:12:47 发布