基于python+flask框架的基于协同过滤的银行客户投资推荐系统的设计与实现(开题+程序+论文) 计算机毕设

本系统(程序+源码+数据库+调试部署+开发环境)论文文档1万字以上,文末可获取,系统界面在最后面。

系统程序文件列表

开题报告内容

研究背景

随着金融市场的日益繁荣与复杂化,银行客户面临着琳琅满目的投资产品选择,如何精准匹配客户需求,提供个性化投资建议,成为银行业提升服务质量、增强客户粘性的关键。传统的人工推荐方式不仅效率低下,且难以全面捕捉客户的个性化偏好与风险承受能力。在此背景下,基于协同过滤技术的银行客户投资推荐系统应运而生。协同过滤作为一种成熟的推荐算法,通过挖掘用户行为数据,发现用户间的相似性,进而预测用户对未接触产品的兴趣度,为银行客户量身打造个性化投资方案,有效解决了信息过载与个性化需求之间的矛盾。

研究意义

本研究的意义在于,一方面,通过构建基于协同过滤的银行客户投资推荐系统,能够显著提升银行服务的智能化水平,使投资推荐更加精准高效,增强客户体验,促进银行业务的数字化转型。另一方面,该系统能够深入挖掘客户投资行为背后的规律与趋势,为银行提供宝贵的市场洞察,助力银行优化产品策略,提升市场竞争力。此外,该系统还有助于提升客户的风险管理能力,通过个性化推荐,引导客户根据自身财务状况和风险承受能力做出合理投资决策,实现财富增值。

研究目的

本研究旨在设计并实现一个高效、精准的基于协同过滤的银行客户投资推荐系统。该系统将集成用户信息管理、投资类别划分、投资产品展示、投资记录追踪、个人征信评估及银行卡信息关联等功能模块,通过收集并分析客户的投资行为数据、个人征信信息及银行卡交易记录等多维度信息,运用协同过滤算法,为每位客户生成个性化的投资推荐列表。同时,系统还需具备良好的可扩展性和可维护性,以适应未来银行业务发展和客户需求变化。通过本研究的实施,期望能够为银行业提供一套切实可行的投资推荐解决方案,推动银行业服务模式的创新与升级。

研究内容

本研究内容围绕银行客户投资推荐系统的核心功能展开,具体包括:

  1. 用户信息管理:构建用户画像,收集并存储客户的基本信息、投资偏好、风险承受能力等关键数据,为个性化推荐提供基础。
  2. 投资类别与投资产品管理:定义并维护投资类别体系,录入各类投资产品的详细信息,包括预期收益、风险等级、投资期限等,便于系统根据客户需求进行筛选。
  3. 投资记录追踪:记录并分析客户的投资行为,包括投资金额、投资时间、投资产品等,为协同过滤算法提供数据支持。
  4. 个人征信评估:集成个人征信数据,评估
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值