原题链接:http://pat.zju.edu.cn/contests/pat-b-practise/1020
月饼是中国人在中秋佳节时吃的一种传统食品,不同地区有许多不同风味的月饼。现给定所有种类月饼的库存量、总售价、以及市场的最大需求量,请你计算可以获得的最大收益是多少。
注意:销售时允许取出一部分库存。样例给出的情形是这样的:假如我们有3种月饼,其库存量分别为18、15、10万吨,总售价分别为75、72、45亿元。如果市场的最大需求量只有20万吨,那么我们最大收益策略应该是卖出全部15万吨第2种月饼、以及5万吨第3种月饼,获得 72 + 45/2 = 94.5(亿元)。
输入格式:
每个输入包含1个测试用例。每个测试用例先给出一个不超过1000的正整数N表示月饼的种类数、以及不超过500(以万吨为单位)的正整数D表示市场最大需求量。随后一行给出N个正数表示每种月饼的库存量(以万吨为单位);最后一行给出N个正数表示每种月饼的总售价(以亿元为单位)。数字间以空格分隔。
输出格式:
对每组测试用例,在一行中输出最大收益,以亿元为单位并精确到小数点后2位。
输入样例:3 20 18 15 10 75 72 45输出样例:
94.50
//使用list的排序算法
#include <stdio.h> #include <list> using namespace std; const int N = 1000; struct Cake { int num;//库存 int total_price;//总价 double unit_price;//单价 }; bool cakeSort(Cake cake1, Cake cake2) { return cake1.unit_price>cake2.unit_price; } int main() { int n, m;//分别表示种类数及最大需求量 list<Cake> cakes; int amount[N]; double max_profit; while(scanf("%d %d", &n, &m)!=EOF) { for(int i=0; i<n; i++) { scanf("%d", &amount[i]); } for(int i=0; i<n; i++) { Cake cake; scanf("%d", &cake.total_price); cake.num = amount[i]; cake.unit_price = (double)cake.total_price/cake.num; cakes.push_back(cake); } cakes.sort(cakeSort); max_profit = 0; while(!cakes.empty()) { Cake cake = cakes.front(); cakes.pop_front(); if(cake.num>=m) { max_profit +=((double)cake.total_price*m/cake.num); break; } max_profit +=cake.total_price; m -= cake.num; } printf("%0.2f\n", max_profit); cakes.clear(); } return 0; }
无奈有一个点一直测试超时,考虑到没有必要对所有的数据都排序,所以改用下面的方法,冒泡排序,每次得到单价最大的月饼后就进行计算,满足市场需求量后即停止,但还是超时,以后再想办法。
#include <stdio.h> const int N = 1000; struct Cake { int num;//库存 int total_price;//总价 double unit_price;//单价 }; int main() { int n, m;//分别表示种类数及最大需求 Cake cakes[N]; double max_profit; while(scanf("%d %d", &n, &m)!=EOF) { for(int i=0; i<n; i++) { scanf("%d", &cakes[i].num); } for(int i=0; i<n; i++) { scanf("%d", &cakes[i].total_price); cakes[i].unit_price = (double)cakes[i].total_price/cakes[i].num; } int index = 0; max_profit = 0; bool sorted = false; for(int i=0; i<n; ++i) { if(!sorted) { sorted = true; for(int j=n-1; j>i; --j) { if(cakes[j].unit_price > cakes[j-1].unit_price) { Cake c = cakes[j]; cakes[j] = cakes[j-1]; cakes[j-1] = c; sorted = false; } } } if(cakes[i].num >= m) { max_profit +=((double)cakes[i].total_price*m/cakes[i].num); break; } else { max_profit +=cakes[i].total_price; m -= cakes[i].num; } } printf("%0.2f\n", max_profit); } return 0; }