基于django+vue+Vue二手交易推荐平台设计与实现【开题报告+程序+论文】-计算机毕设

本系统(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。

系统程序文件列表

开题报告内容

研究背景

随着经济的快速发展和人们生活水平的提高,消费者购买力的增强使得商品更新换代的速度日益加快,大量闲置的二手商品应运而生。然而,传统的二手交易方式往往局限于线下社区、跳蚤市场或简单的在线论坛,这些方式存在着信息分散、交易效率低下、信任机制缺失等问题。因此,构建一个高效、安全、便捷的二手交易推荐平台,成为解决当前二手市场交易痛点的重要途径。通过数字化手段整合二手商品资源,提供智能化的推荐服务,不仅可以促进资源的循环利用,还能有效激发二手市场的活力,满足消费者多样化的需求。

研究意义

本研究旨在通过设计与实现二手交易推荐平台,推动二手市场的数字化转型,提升交易效率与透明度。平台通过用户行为分析、商品智能分类及推荐算法,帮助用户快速找到心仪的二手商品,同时降低信息不对称带来的风险,增强交易双方的信任感。此外,该研究还有助于培养公众的环保意识,促进资源的可持续利用,对构建绿色低碳社会具有重要意义。通过技术创新优化二手交易流程,本研究将为二手市场的健康发展提供有力支撑。

研究目的

本研究的主要目的是设计并实现一个功能完善、用户体验良好的二手交易推荐平台。该平台将围绕用户需求,集成用户管理、商品分类浏览、二手商品展示与搜索、智能推荐系统等核心功能,旨在打造一个高效、安全、可靠的二手商品交易平台。通过技术手段优化交易流程,提升用户参与度与满意度,进而推动二手市场的规范化、规模化发展,为社会经济的可持续发展贡献力量。

研究内容

本研究的核心内容将围绕二手交易推荐平台的设计与实现展开,具体涵盖以下几个关键方面:首先,构建用户管理系统,实现用户注册、登录、个人信息管理等功能,确保用户信息的安全与隐私保护;其次,设计商品分类体系,依据商品属性进行细致划分,便于用户快速定位所需商品类别;再者,开发二手商品管理系统,支持商品的发布、编辑、下架等操作,确保商品信息的真实性与时效性;同时,集成智能推荐算法,基于用户历史行为、偏好及商品特征,为用户提供个性化的商品推荐服务,提升交易匹配效率;最后,完善交易流程,包括在线沟通、议价、支付、评价等环节,构建完整的交易闭环,保障交易双方的权益。通过这些功能的实现,平台将为用户提供一站式的二手交易体验,促进二手市场的繁荣发展。

进度安排:

2023年12月: 查看相关资料、技术,准备技术文档,做好需求分析;下发任务书;

2024年01月: 撰写开题报告,并制定软件开发计划,初步设计软件功能架构;

2024年02月: 根据需求分析,进行详细设计;初步设计软件部分功能,完成开题报告;

2024年03月: 对软件前,后台系统功能进行开发,完成软件各个功能模块,撰写论文初稿;

2024年04月:进行系统测试、论文初稿完成、和指导教师沟通,上交初稿,查重,中期检查;

2024年05月:修改论文,完成定稿,软件功能全部实现、测试、界面美化,上交论文资料,参加答辩。

参考文献:

[1]   Hamed Tahmooresi, A. Heydarnoori et al. "An Analysis of Python's Topics, Trends, and Technologies Through Mining Stack Overflow Discussions." arXiv.org (2020).

[2]   韩文煜. "基于python数据分析技术的数据整理与分析研究"[J]. 科技创新与应用, 2020, No.296(04): 157-158.

[3]   Sebastian Bassi. "A Primer on Python for Life Science Researchers." PLoS Comput. Biol. (2007).

[4]   Roseline Bilina and S. Lawford. "Python for Unified Research in Econometrics and Statistics." (2009). 558 591.

[5]   程俊英. "基于Python语言的数据分析处理研究"[J]. 电子技术与软件工程, 2022, No.233(15): 236-239.

[6]   曾浩. "基于Python的Web开发框架研究"[J]. 广西轻工业, 2011, 27(08): 124-125+176.

[7]   Fabian Pedregosa, G. Varoquaux et al. "Scikit-learn: Machine Learning in Python." Journal of machine learning research(2011).

[8]   陈佳佳, 邱晓荣, 熊宇昊, 段莉华. "基于Python的人脸识别技术研究"[J]. 电脑知识与技术, 2023, 19 (08): 34-36+39.

[9]   阿不都艾尼·阿不都肉素力. "Python的计算机软件应用技术分析"[J]. 电脑编程技巧与维护, 2021, No.435(09): 29-30+58.

[10] 张楠. "Python语言及其应用领域研究"[J]. 科技创新导报, 2019, 16(17): 122-123.

[11] 王雄伟, 侯海珍. "大数据专业Python程序设计课程建设探究"[J]. 知识窗(教师版), 2023, (10): 117-119.

[12] 朱向阳. "高中信息技术python项目式教学路径分析"[J]. 高考, 2023, (24): 126-128.

以上是开题是根据本选题撰写,是项目程序开发之前开题报告内容,后期程序可能存在大改动。最终成品以下面运行环境+技术栈+界面为准,可以酌情参考使用开题的内容。要源码请在文末进行获取!!

系统技术栈:

前端:Vue.jsHTMLCSSJavaScript后端技术栈

后端:Python 3.7.7Django MySQL5.7

开发工具:PyCharm社区版、Navicat 11以上版本

系统开发流程:

•   使用HTML、CSS和JavaScript结合Vue.js构建前端界面。

•   使用Python语言结合Django框架开发RESTful API。

•   利用MySQL数据库进行数据存储和查询。

•   通过PyCharm IDE进行代码编写、调试和项目管理。

毕设使用者指南

系统概览

本系统是一个基于现代Web技术构建的应用程序,旨在为用户提供一个交互性强、响应快速的用户体验。系统前端采用Vue.js框架,后端使用Python语言结合Django框架,并以MySQL作为数据存储解决方案。

前端使用指南

1.界面导航

  • 主页:展示系统的主要功能和概览信息。
  • 功能页面:根据需要,用户可以访问不同的功能页面,如用户管理、数据分析等。

2. 交互操作

  • 使用HTMLCSS构建的界面元素,如按钮、链接、表单等,用户可以点击或输入信息进行操作。
  • 利用JavaScriptVue.js实现的动态功能,如实时数据更新、表单验证等,增强用户交互体验。

后端服务指南

1. API使用

  • 系统后端提供RESTful API,用户可以通过HTTP请求与系统进行数据交互。
  • 常见的API操作包括GET(获取数据)、POST(提交数据)、PUT(更新数据)和DELETE(删除数据)。

2. 数据管理

  • 利用MySQL数据库,系统能够安全、高效地存储和管理用户数据。
  • 用户可以通过系统界面或API访问数据库中的数据。

程序界面:

源码、数据库获取↓↓↓↓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值