消费类摄像头热销海内外,萤石出货量全球排名第一

随着消费者对家庭安全、便捷生活的需求日益增长,智能摄像头作为智能家居的重要组成部分,其市场需求将持续扩大。

IDC《全球智能家居设备市场季度跟踪报告,2024年第二季度》显示,二季度全球智能摄像头市场(包含消费级室内和室外摄像头,含运营商渠道)出货3,168万台,同比增长11.8%,2024上半年,市场总出货量攀升至6,321万台,同比增长11%,彰显了摄像头市场的持续发展动力。

从出货区域来看,中国市场二季度出货1,150.7万台,同比增长3.9%,增幅较一季度收窄。其中室内摄像头出货775.8万台,室外摄像头出货374.9万台,室外摄像头增速高于室内。从产品类型来看,双目产品增长趋势明显,室内摄像头大步向500万像素升级。

de985ff10eab9130ea6f032d2b92b7e2.jpeg

在众多智能安防品牌中,萤石网络(海康威视子品牌)凭借其创新的技术实力,出货量排名全球第一,显示出强劲的竞争力。根据IDC发布的《全球智能家居设备市场季度跟踪报告,2024年第二季度》,萤石网络在全球消费类摄像头市场中,出货量实现8.3%的同比增长,以29.9%的市场份额继续2024年第一季度优势再度问鼎TOP 1宝座。

14561ecc9a9c99bee92fd0d0e9a988dd.jpeg

萤石网络之所以能够在全球消费类摄像头市场占据如此重要的地位,首先得益于其持续不断的技术创新。

4a4b7951a2c9bb5d6aeaf07e9962bf2d.jpeg

萤石作为智能家居领域的领军企业,一直在积极推动智能家居摄像机向视觉化、场景化、智能化升级。回顾过去,2021年萤石首创C端“算法商店”,让用户能够灵活扩展设备功能,享受持续进化的智能体验。并且,由发布新一代AI摄像机C6为起点,正式开启了萤石此后持续提升摄像头AI能力的创新之路。

萤石在视觉技术方面不断创新,将AI技术深度融入摄像机产品中。萤石摄像机搭载的AI算法能够实现智能识别、行为分析等功能,提升视觉化监控的效率和准确性。比如,超级夜景室外云台H8x系列,通过自研的AI-ISP技术对暗光环境下的图像进行自动降噪,确保在夜晚也能提供清晰透彻的画面。

通过构建全链路智能家居生态系统,萤石将智能摄像机与其他萤石智能设备互联互通,为用户提供更加便捷、安全的智能家居体验。

4e0bb5176f9a6ceefb43c79020a7eee8.jpeg

市场洞察方面,萤石面向大众消费市场有着十年功底。自2013年来,萤石针对不同生活场景不断推出多款智能摄像机产品,以满足用户的多元化细分需求。例如,针对养宠用户,萤石推出了可移动的TAMO看护摄像机等产品,通过AI技术提供了逗宠互动和巡视宠物状态的功能;针对老年人及儿童看护需求,萤石推出了视频通话摄像机S10等产品,让家人能够实时进行双向视频通讯。

d0a6761ec402b43ac780c82d715e763d.jpeg

市场拓展方面,萤石在巩固现有市场的基础上进一步拓展新兴市场,提升在全球范围内的市场份额和品牌影响力。

萤石近年来将全球化战略的核心放在了东南亚、拉美、中东等地区,试图在这些新兴市场寻找到第二增长曲线。通过“全渠道覆盖,多站点并行”的策略,萤石积极拓展各类销售渠道,采用差异化销售策略,不断完善全球分销网络。

与此同时,针对不同国家和地区,萤石设立了不同的独立站,进行多站点运营,并根据用户画像的不同进行细微调整,进行本地化营销。此外,在Youtube、TikTok等海外社媒平台上进行布局,实施差异化营销策略,提升品牌的全球影响力。通过这些努力,萤石网络在海外市场取得了良好的表现和增长,进一步扩大了市场份额。

综上所述,2024年Q1、Q2萤石智能摄像头出货量均稳居全球第一,这一成绩是萤石在技术创新、产品升级、市场拓展等多方面努力的结果。未来,萤石有望在智能家居市场实现更大的突破和发展,让我们拭目以待。

内容概要:本文档详细介绍了在三台CentOS 7服务器(IP地址分别为192.168.0.157、192.168.0.158和192.168.0.159)上安装和配置Hadoop、Flink及其他大数据组件(如Hive、MySQL、Sqoop、Kafka、Zookeeper、HBase、Spark、Scala)的具体步骤。首先,文档说明了环境准备,包括配置主机名映射、SSH免密登录、JDK安装等。接着,详细描述了Hadoop集群的安装配置,包括SSH免密登录、JDK配置、Hadoop环境变量设置、HDFS和YARN配置文件修改、集群启动与测试。随后,依次介绍了MySQL、Hive、Sqoop、Kafka、Zookeeper、HBase、Spark、Scala和Flink的安装配置过程,包括解压、环境变量配置、配置文件修改、服务启动等关键步骤。最后,文档提供了每个组件的基本测试方法,确保安装成功。 适合人群:具备一定Linux基础和大数据组件基础知识的运维人员、大数据开发工程师以及系统管理员。 使用场景及目标:①为大数据平台搭建提供详细的安装指南,确保各组件能够顺利安装和配置;②帮助技术人员快速掌握Hadoop、Flink等大数据组件的安装与配置,提升工作效率;③适用于企业级大数据平台的搭建与维护,确保集群稳定运行。 其他说明:本文档不仅提供了详细的安装步骤,还涵盖了常见的配置项解释和故障排查建议。建议读者在安装过程中仔细阅读每一步骤,并根据实际情况调整配置参数。此外,文档中的命令和配置文件路径均为示例,实际操作时需根据具体环境进行适当修改。
在无线通信领域,天线阵列设计对于信号传播方向和覆盖范围的优化至关重要。本题要求设计一个广播电台的天线布局,形成特定的水平面波瓣图,即在东北方向实现最大辐射强度,在正东到正北的90°范围内辐射衰减最小且无零点;而在其余270°范围内允许出现零点,且正西和西南方向必须为零。为此,设计了一个由4个铅垂铁塔组成的阵列,各铁塔上的电流幅度相等,相位关系可自由调整,几何布置和间距不受限制。设计过程如下: 第一步:构建初级波瓣图 选取南北方向上的两个点源,间距为0.2λ(λ为电磁波波长),形成一个端射阵。通过调整相位差,使正南方向的辐射为零,计算得到初始相位差δ=252°。为了满足西南方向零辐射的要求,整体相位再偏移45°,得到初级波瓣图的表达式为E1=cos(36°cos(φ+45°)+126°)。 第二步:构建次级波瓣图 再选取一个点源位于正北方向,另一个点源位于西南方向,间距为0.4λ。调整相位差使西南方向的辐射为零,计算得到相位差δ=280°。同样整体偏移45°,得到次级波瓣图的表达式为E2=cos(72°cos(φ+45°)+140°)。 最终组合: 将初级波瓣图E1和次级波瓣图E2相乘,得到总阵的波瓣图E=E1×E2=cos(36°cos(φ+45°)+126°)×cos(72°cos(φ+45°)+140°)。通过编程实现计算并绘制波瓣图,可以看到三个阶段的波瓣图分别对应初级波瓣、次级波瓣和总波瓣,最终得到满足广播电台需求的总波瓣图。实验代码使用MATLAB编写,利用polar函数在极坐标下绘制波瓣图,并通过subplot分块显示不同阶段的波瓣图。这种设计方法体现了天线阵列设计的基本原理,即通过调整天线间的相对位置和相位关系,控制电磁波的辐射方向和强度,以满足特定的覆盖需求。这种设计在雷达、卫星通信和移动通信基站等无线通信系统中得到了广泛应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值