权威机构高端智能锁排名:2024Q4德施曼第一小米、凯迪仕位居二三

权威机构发布高端智能锁排名:2024Q4德施曼第一,小米、凯迪仕位居二三

近日,权威机构奥维云网发布阶段性报告,报告显示受国补政策红利等多重因素驱动,2024年智能门锁的线上高端市场(线上市场含传统电商及内容电商,高端指2000元及以上市场,下同),在四季度迎来大幅增长,零售额同比大幅增长20%,零售量同比增长超过26%;其中德施曼作为行业领军品牌,在四季度线上高端市场销售量、额排名中均位列首位,小米、凯迪仕、鹿客、华为分别位列第二到五名。

2024年中国智能门锁Q4线上高端市场TOP5品牌

而在2024年全年线上高端市场,德施曼凭借多年深耕智能门锁领域积累的良好口碑,以及对消费者需求的精准把握,零售额及零售量占比均达到27%,依然稳居高端市场榜首。与小米、凯迪仕、鹿客、华为品牌共同包揽行业高端品牌前五的位置。

2024年中国智能门锁线上高端市场TOP5品牌

数据来源:奥维云网(AVC)线上监测数据

结合奥维云网此前发布的《2024年中国智能门锁行业发展总结报告》,在四季度的强劲带动下,2024年中国智能门锁行业需求涨势向好,全渠道零售量规模为2031万套,同比增长8.6%;报告指出,品牌格局方面,德施曼2024年位居线上全渠道的销额第一在线上 2000 元及以上的高端市场中,德施曼全年的零售量及零售额占比均达到27%,稳居第一


国补政策赋能 高端市场涨势强劲

奥维云网报告显示,2024年一季度至三季度,线上高端市场规模增长较为平缓,零售额同比增长2.9%,零售量同比增长4.1%。这一阶段,智能门锁线上高端市场发展相对平稳,需求尚未得到充分激发。然而,2024年四季度,随着国补政策的强势介入,线上高端市场规模表现发生显著转变。高端智能门锁需求强势反弹,充分显示出国家政策红利对高端智能门锁消费的强大激活效果。

报告强调,2024年国补期间,德施曼表现突出,在竞争激烈的市场中脱颖而出,得益于其在行业中的领先地位以及长期的高端市场布局。在2024年线上高端市场,德施曼凭借多年深耕智能门锁领域积累的良好口碑,以及对消费者需求的精准把握,零售额及零售量占比均达到27%,稳居高端市场榜首。与小米、凯迪仕、鹿客、华为品牌共同包揽行业高端品牌前五的位置。

TOP5品牌在高端智能门锁市场的零售额、零售量占比均高达89%,市场呈现出高度集中化的特征。这不仅体现了头部品牌在高端市场强大的影响力和消费者的高忠诚度,也反映出它们的产品在技术、品质方面具备显著竞争力。

此前,奥维云网2024年度报告显示,德施曼在线上全渠道2000元以上价位段位居销量&销额第一;洛图科技2024年度报告显示,德施曼在线上全渠道1500元以上多个价位段的销量维度排名第一。


线上市场持续增长,电商多元化发展

维云网(AVC)全渠道推总数据显示,2024年中国智能门锁市场零售量规模达到2031万套,同比增长8.6%。其中,线上市场零售量规模为789万套,同比增长20.9%,市场占比达到39%,较2023年提升了4个百分点。线上智能门锁市场的大幅增长,是消费习惯变迁、渠道效率升级以及国补政策等多因素共同作用的结果。而2024年智能门锁的线上高端市场国补政策发挥了重要推动作用,使其在四季度展现出了强劲的增长力。

2024年,智能门锁在专业电商、平台电商、内容电商市场中,均为量额双增的表现。洛图科技强调,在市场营销方面,德施曼持续投入直播资源,提升品牌曝光度与影响力,在新兴电商的销量、销额超过20%,稳居行业首位。

奥维云网在报告中强调,2024 年的国补政策在短期内有效激活了高端需求,充分验证了高端智能门锁的增长弹性,但行业也需警惕需求透支效应与价格战隐忧。从长远来看,行业的长期价值仍需回归到技术创新与用户体验上。企业需要在政策红利与内生增长之间找到平衡点,为智能门锁行业的高质量发展提供长效支撑。

内容概要:该论文研究了一种基于粒子群优化(PSO)的STAR-RIS辅助NOMA无线通信网络优化方法。STAR-RIS作为一种新型可重构智能表面,能够同时反射和传输信号,与传统的仅能反射的RIS不同。结合NOMA技术,可以提高覆盖范围、同时服务的用户数量和频谱效率。由于STAR-RIS元素众多,获取完整信道状态信息(CSI)开销大,因此作者提出在不依赖完整CSI的情况下,联合优化功率分配、基站波束成形以及STAR-RIS的传输和反射波束成形向量,以最大化总可实现速率,同时保证每个用户的最低速率要求。仿真结果表明,该方案优于STAR-RIS辅助的OMA系统。论文还提供了详细的Python代码实现,包括系统参数设置、信道模型、速率计算、目标函数、约束函数、主优化函数和结果可视化等内容,完整再现了论文中的关键技术方案。 适合人群:通信工程领域的研究人员、高校教师和研究生,特别是对智能反射面技术、非正交多址接入技术和智能优化算法感兴趣的读者。 使用场景及目标:①研究和开发基于STAR-RIS的无线通信系统;②探索PSO算法在无线通信优化中的应用;③评估STAR-RIS-NOMA系统相对于传统OMA系统的性能优势;④为实际通信系统设计提供理论依据和技术支持。 其他说明:该论文不仅提出了创新的技术方案,还提供了完整的代码实现,便于读者理解和复现实验结果。此外,论文还讨论了与其他优化方法(如DDPG)的对比,并分析了不同工作协议(如模式切换、时间切换和能量分配)的性能差异,进一步丰富了研究内容。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值