劳保手套在浸胶和印花工序中,经常因为设备故障及质检不足导致出现流胶、脏污及印花异常等多种次品情况,致使客诉率不断攀升。质检人员的质检依据不标准、设备维护成本高等多因素,逐渐形成了对劳保手套自动化瑕疵检测的需求。
针对手套产线提出的瑕疵检测的需求,采用工业相机(镜头)抓取+AI深度学习+执行机构控制的组合方案,对现场素材进行抓取训练,通过模型优化和训练不断提高瑕疵检测的识别准确度,达到3分钟建模并成熟使用,检测手套脏污、破洞、胶长胶短、胶短、洇色、印花不良等,并将结果进行发送。
可根据班次形成数据表,查看班次数据,实现智能化管理。