LeetCode Best Time to Buy and Sell Stock III

Best Time to Buy and Sell Stock III

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most two transactions.

Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

Tips:

Seperate the origin vector into two parts, and the target now changes to find the best partation that each part has one transaction.

Then the problem becomes to find the maximum sum of these partations.

Solution:

class Solution {
public:
    int maxProfit(vector<int> &prices) {
        // Start typing your C/C++ solution below
        // DO NOT write int main() function
        if(prices.empty())
            return 0;
        vector<int> profit1;
        vector<int> profit2;
        
        int curr=prices[0],diff=0;
        profit1.push_back(diff);
        for(int i=1;i<prices.size();++i){
            if(prices[i]>curr){
                diff=max(diff,prices[i]-curr);
            }else{
                curr=prices[i];                
            }
            profit1.push_back(diff);
        }
        curr=prices.back();
        diff=0;
        profit2.push_back(diff);
        for(int i=prices.size()-2;i>=0;--i){
            if(prices[i]<curr){
                diff=max(diff,curr-prices[i]);
            }else{
                curr=prices[i];
            }
            profit2.push_back(diff);
        }
        reverse(profit2.begin(),profit2.end());
        transform(profit1.begin(),profit1.end(),profit2.begin(),profit1.begin(),plus<int>());
        return *max_element(profit1.begin(),profit1.end());
    }
};

A little optimize:

class Solution {
public:
    int maxProfit(vector<int> &prices) {
        // Start typing your C/C++ solution below
        // DO NOT write int main() function
        if(prices.empty())
            return 0;
        vector<int> profit(prices.size(),0);
        int curr=prices[0],curr1=prices.back(),diff=0,diff1=0;
        for(int i=1;i<prices.size();++i){
            if(prices[i]>curr){
                diff=max(diff,prices[i]-curr);
            }else{
                curr=prices[i];
            }
            if(prices[prices.size()-i-1]<curr1){
                diff1=max(diff1,curr1-prices[prices.size()-i-1]);
            }else{
                curr1=prices[prices.size()-i-1];
            }
            profit[i]+=diff;
            profit[prices.size()-i-1]+=diff1;
        }
        return *max_element(profit.begin(),profit.end());
    }
};





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值