Best Time to Buy and Sell Stock III
Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete at most two transactions.
Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
Tips:
Seperate the origin vector into two parts, and the target now changes to find the best partation that each part has one transaction.
Then the problem becomes to find the maximum sum of these partations.
Solution:
class Solution {
public:
int maxProfit(vector<int> &prices) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
if(prices.empty())
return 0;
vector<int> profit1;
vector<int> profit2;
int curr=prices[0],diff=0;
profit1.push_back(diff);
for(int i=1;i<prices.size();++i){
if(prices[i]>curr){
diff=max(diff,prices[i]-curr);
}else{
curr=prices[i];
}
profit1.push_back(diff);
}
curr=prices.back();
diff=0;
profit2.push_back(diff);
for(int i=prices.size()-2;i>=0;--i){
if(prices[i]<curr){
diff=max(diff,curr-prices[i]);
}else{
curr=prices[i];
}
profit2.push_back(diff);
}
reverse(profit2.begin(),profit2.end());
transform(profit1.begin(),profit1.end(),profit2.begin(),profit1.begin(),plus<int>());
return *max_element(profit1.begin(),profit1.end());
}
};
A little optimize:
class Solution {
public:
int maxProfit(vector<int> &prices) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
if(prices.empty())
return 0;
vector<int> profit(prices.size(),0);
int curr=prices[0],curr1=prices.back(),diff=0,diff1=0;
for(int i=1;i<prices.size();++i){
if(prices[i]>curr){
diff=max(diff,prices[i]-curr);
}else{
curr=prices[i];
}
if(prices[prices.size()-i-1]<curr1){
diff1=max(diff1,curr1-prices[prices.size()-i-1]);
}else{
curr1=prices[prices.size()-i-1];
}
profit[i]+=diff;
profit[prices.size()-i-1]+=diff1;
}
return *max_element(profit.begin(),profit.end());
}
};