算法:如何分析、统计算法的执行效率和资源消耗

  • 我们都知道,数据结构和算法本身解决的是“快”和“省”的问题,即如何让代码运行得更快,如何让代码更省存储空间。所以,执行效率是算法一个非常重要的考量指标。那如何来衡量你编写的算法代码的执行效率呢?那就要用到时间、空间复杂度分析。
  • 复杂度分析是整个算法学习的精髓,只要掌握了它,数据结构和算法的内容基本上就掌握了一半。

为什么需要复杂度分析?

事后统计法

把代码跑一遍,通过统计、监控,就能得到算法执行的时间和占用的内存大小。为什么还要做时间、空间复杂度分析呢?这种分析方法能比实实在在跑一遍得到的数据更准确吗?

这种评估算法执行效率的方法是正确的。很多数据结构和算法书籍还给这种方法起了一个名字,叫事后统计法。但是,这种统计方法有非常大的局限性。

(1)测试结果非常依赖测试环境。测试环境中硬件的不同会对测试结果有很大的影响。比如,我们拿同样一段代码,分别用Intel Core i9 处理器和 Intel Core i3 处理器来运行,不用说,i9 处理器要比 i3 处理器执行的速度快很多。还有,比如原本在这台机器上 a 代码执行的速度比 b 代码要快,等我们换到另一台机器上时,可能会有截然相反的结果。

(2)测试结果受数据规模的影响很大。比如对同一个排序算法,待排序数据的有序度不一样,排序的执行时间就会有很大的差别。极端情况下,如果数据已经是有序的,那排序算法不需要做任何操作,执行时间就会非常短。除此之外,如果测试数据规模太小,测试结果可能无法真实地反应算法的性能。比如,对于小规模的数据排序,插入排序可能反倒会比快速排序要快!

所以,我们需要一个不用具体的测试数据来测试,就可以粗略地估计算法的执行效率的方法。

大O复杂度表示法

算法的执行效率,粗略地讲,就是算法代码执行的时间。但是,如何在不运行代码的情况下,用“肉眼”得到一段代码的执行时间呢?

举个例子

int cal(int n) {
	 int sum = 0;
	 int i = 1;
	 for (; i <= n; ++i) {
	 	sum = sum + i;
	 }
	 return sum;
 }

从CPU的角度来看,这段代码的每一行都执行着类似的操作:读数据-运算-写数据。尽管每行代码对应的CPU执行的个数、执行的时间都不一样。但是,我们这里只是粗略估计,所以可以假设每行代码执行的时间都一样,为unit_time。在这个假设的基础上,这段代码的总执行时间是多少呢?

第 2、3 行代码分别需要 1 个 unit_time 的执行时间,第 4、5 行都运行了 n 遍,所以需要2n*unit_time的执行时间,所以这段代码总的执行时间就是 (2n+2)*unit_time。可以看出来,所有代码的执行时间 T(n) 与每行代码的执行次数成正比

按照这个分析思路,我们再来看这段代码。

 int cal(int n) {
	 int sum = 0;
	 int i = 1;
	 int j = 1;
	 for (; i <= n; ++i) {
		 j = 1;
		 for (; j <= n; ++j) {
		 	sum = sum + i * j;
		 }
	 }
 }

我们依旧假设每个语句的执行时间是 unit_time。那这段代码的总执行时间 T(n) 是多少呢?

第 2、3、4 行代码,每行都需要 1 个 unit_time 的执行时间,第 5、6 行代码循环执行了n 遍,需要2n * unit_time的执行时间,第 7、8 行代码循环执行了 n 2 n^2 n2遍,所以需要 2 n 2 2n^2 2n2 * unit_time的执行时间。所以,整段代码总的执行时间 T ( n ) = ( 2 n 2 + 2 n + 3 ) T(n) = (2n^2 +2n+3) T(n)=(2n2+2n+3)*unit_time。

尽管我们不知道 unit_time 的具体值,但是通过这两段代码执行时间的推导过程,我们可以得到一个非常重要的规律,那就是,所有代码的执行时间 T(n) 与每行代码的执行次数 n成正比

我们可以把这个规律总结成一个公式。注意,大 O 就要登场了!

T ( n ) = O ( f ( n ) ) T(n) = O(f(n)) T(n)=O(f(n))

其中,T(n)它表示代码执行的时间;n表示数据规模的大小;f(n)表示每行代码执行的次数总和。因为这是一个公式,所以用f(n)来表示,公式中的O,表示代码的执行时间T(n)和f(n)表达式成正比。

所以,第一个例子中的 T(n) = O(2n+2),第二个例子中的 T ( n ) = ( 2 n 2 + 2 n + 3 ) T(n) = (2n^2 +2n+3) T(n)=(2n2+2n+3)。这就是大 O 时间复杂度表示法。大 O 时间复杂度实际上并不具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势,所以,也叫作渐进时间复杂度(asymptotic time complexity),简称时间复杂度。

当 n 很大时,你可以把它想象成 10000、100000。而公式中的低阶、常量、系数三部分并不左右增长趋势,所以都可以忽略。我们只需要记录一个最大量级就可以了,如果用大 O表示法表示刚讲的那两段代码的时间复杂度,就可以记为:T(n) = O(n); T(n) = O(n )。

时间复杂度分析

那如何分析一段代码的时间复杂度呢?下面举了三个比较实用的方法

只关注循环执行次数最多的一段代码

大O这种复杂度表示方法只是表示一种变化趋势。我们通常会忽略掉公式中的常量、低阶、系数,只需要记录一个最大阶的量级就可以了。所以,我们在分析一个算法、一段代码的时间复杂度的时候,也只需要关注循环次数最多的那一段代码就可以了

举个例子:

int cal(int n) {
	 int sum = 0;
	 int i = 1;
	 for (; i <= n; ++i) {
	 	sum = sum + i;
	 }
	 return sum;
 }

其中第 2、3 行代码都是常量级的执行时间,与 n 的大小无关,所以对于复杂度并没有影响。循环执行次数最多的是第 4、5 行代码,所以这块代码要重点分析。这两行代码被执行了 n 次,所以总的时间复杂度就是 O(n)。

加法法则:总复杂度等于量级最大的那段代码的复杂度

举个例子:

int cal(int n) {
	 int sum_1 = 0;
	 int p = 1;
	 for (; p < 100; ++p) {
		 sum_1 = sum_1 + p;
	 }
	 
	 int sum_2 = 0;
	 int q = 1;
	 for (; q < n; ++q) {
		 sum_2 = sum_2 + q;
	 }
	 
	 int sum_3 = 0;
	 int i = 1;
	 int j = 1;
	 for (; i <= n; ++i) {
		 j = 1;
		 for (; j <= n; ++j) {
			 sum_3 = sum_3 + i * j;
		 }
	 }
	 return sum_1 + sum_2 + sum_3;
 }

这个代码分为三部分,分别是求 sum_1、sum_2、sum_3。我们可以分别分析每一部分的时间复杂度,然后把它们放到一块儿,再取一个量级最大的作为整段代码的复杂度。

第一段的时间复杂度是多少呢?这段代码循环执行了 100 次,所以是一个常量的执行时间,跟 n 的规模无关。

这里再强调一下,即便这段代码循环1000000次,10000000000次,只要是一个已知的数,跟n无关,照样也是常量级的执行时间。当n无限大时,就可以忽略。尽管对代码的执行时间会有很大影响,但是回到时间复杂度的概念来说,它表示的是一个算法执行效率与数据规模增长的变化趋势,所以不管常量的执行时间多大,我们都可以忽略掉。因为它本身对增长趋势没有影响。

那第二段代码和第三段代码的时间复杂度是多少呢?答案是 O(n) 和 O( n 2 n^2 n2 )

综合这三段代码的时间复杂度,我们取其中最大的量级。所以,整段代码的时间复杂度就为O( n 2 n^2 n2 )。也就是说,总的时间复杂度就等于量级最大的那段代码的时间复杂度。那我们将这个规律抽象成公式就是:

如 果 T 1 ( n ) = O ( f ( n ) ) , T 2 ( n ) = O ( g ( n ) ) ; 那 么 T ( n ) = T 1 ( n ) + T 2 ( n ) = m a x ( O ( f ( n ) ) , O ( g ( n ) ) ) = O ( m a x ( f ( n ) , g ( n ) ) ) . 如果 T1(n)=O(f(n)),T2(n)=O(g(n));那么 T(n)=T1(n)+T2(n)=max(O(f(n)), O(g(n)))=O(max(f(n), g(n))). T1(n)=O(f(n))T2(n)=O(g(n))T(n)=T1(n)+T2(n)=max(O(f(n)),O(g(n)))=O(max(f(n),g(n))).

乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的成绩

乘法法则:

如 果 T 1 ( n ) = O ( f ( n ) ) , T 2 ( n ) = O ( g ( n ) ) ; 那 么 T ( n ) = T 1 ( n ) ∗ T 2 ( n ) = O ( f ( n ) ) ∗ O ( g ( n ) ) = O ( f ( n ) ∗ g ( n ) ) . 如果 T1(n)=O(f(n)),T2(n)=O(g(n));那么T(n)=T1(n)*T2(n)=O(f(n))*O(g(n))=O(f(n)*g(n)). T1(n)=O(f(n))T2(n)=O(g(n))T(n)=T1(n)T2(n)=O(f(n))O(g(n))=O(f(n)g(n)).

也就是说,假设 T1(n) = O(n),T2(n) = O( n 2 n^2 n2),则 T1(n) * T2(n) = O( n 3 n^3 n3 )。落实到具体的代码上,我们可以把乘法法则看成是嵌套循环,举个例子:

int cal(int n) {
	 int ret = 0;
	 int i = 1;
	 for (; i < n; ++i) {
		 ret = ret + f(i);
	 }
 }
 
 int f(int n) {
	 int sum = 0;
	 int i = 1;
	 for (; i < n; ++i) {
		 sum = sum + i;
	 }
	 return sum;
 }

我们单独看 cal() 函数。假设 f() 只是一个普通的操作,那第 4~6 行的时间复杂度就是,T1(n) = O(n)。但 f() 函数本身不是一个简单的操作,它的时间复杂度是 T2(n) = O(n),所以,整个 cal() 函数的时间复杂度就是,T(n) = T1(n) * T2(n) = O(n*n) = O( n 2 n^2 n2)。

几种常见时间复杂度实例分析

虽然代码千差万别,但是常见的复杂度量级并不多。总结如下

在这里插入图片描述
对上面罗列的复杂度量级,我们可以粗略地分为两类,多项式量级和非多项式量级。其中,非多项式量级只有两个:O( 2 n 2^n 2n) 和 O(n!)。

当数据规模n越来越大时,非多项式量级算法的执行时间会急剧增加,求解问题的执行时间会无限增长。所以,非多项式时间复杂度的算法其实是非常低效的算法。因此,几乎不常见。我们主要来看几种常见的多项式时间复杂度。

O(1)

首先必须明确的是,O(1)只是常量级时间复杂度的一种表示方法,并不是指只执行了一行代码。比如这段代码,即便只有3行,它的时间复杂度也是 O(1),而不是 O(3)。

 int i = 8;
 int j = 6;
 int sum = i + j;

总的来说,只要代码的执行时间不随n的增大而增长,这样代码的时间复杂度我们都记作O(1)。或者说,一般情况下,只要算法中不存在循环语句、递归语句,即便有成千上万行的代码,其时间复杂度也是O(1)

O(logn)、O(nlogn)

对数阶时间复杂度非常常见,同时也是最难分析的一种时间复杂度。举个例子

i=1;
 while (i <= n) {
 i = i * 2;
 }

根据我们前面讲的复杂度分析方法,第三行代码是循环执行次数最多的。所以,我们只要能计算出这行代码被执行了多少次,就能知道整段代码的时间复杂度。

从代码中可以看出,变量 i 的值从 1 开始取,每循环一次就乘以 2。当大于 n 时,循环结束。还记得我们高中学过的等比数列吗?实际上,变量 i 的取值就是一个等比数列。如果我把它一个一个列出来,就应该是这个样子的:
在这里插入图片描述
所以,我们只要知道 x 值是多少,就知道这行代码执行的次数了。通过 2 =n 求解 x 这个问题我们想高中应该就学过了,我就不多说了。x=log n,所以,这段代码的时间复杂度就是 O( l o g 2 n log_2 n log2n)。

那下面代码的时间复杂度是多少?

i=1;
 while (i <= n) {
 	i = i * 3;
 }

很简单就能看出来,这段代码的时间复杂度为 O( l o g 3 n log_3 n log3n)。

实际上,不管是以2为底,还是以3为底,还是以10为底,我们可以把所有对数阶的时间复杂度都记为O( l o g n log n logn)。为什么呢?

我们知道,对数之间是可以互相转换的, l o g 3 n log_3n log3n 就等于 l o g 3 2 ∗ l o g 2 n log_32*log_2n log32log2n,所以 O ( l o g 3 n ) = O ( C ∗ l o g 2 n ) O(log_3n) =O(C * log_2n) O(log3n)=O(Clog2n),其中 C = l o g 3 2 C=log_32 C=log32 是一个常量。基于我们前面的一个理论:在采用大 O 标记复杂度的时候,可以忽略系数,即 O(Cf(n)) = O(f(n))。所以,O(log_2n) 就等于 O(log_3n)。因此,在对数阶时间复杂度的表示方法里,我们忽略对数的“底”,统一表示为 O(logn)。

那O(nlogn) 有怎么理解呢?根据乘法法则,如果一段代码的时间复杂度是O( l o g n log n logn),我们循环执行n遍,时间复杂度就是O(nlogn)。而且,O(nlogn) 也是一种非常常见的算法时间复杂度。比如,归并排序、快速排序的时间复杂度都是 O(nlogn)。

O(m+n)、O(m*n)

我们再来讲一种跟前面都不一样的时间复杂度,代码的时间复杂度有两个数据的规模决定。举个例子

int cal(int m, int n) {
	 int sum_1 = 0;
	 int i = 1;
	 for (; i < m; ++i) {
	 	sum_1 = sum_1 + i;
	 }
	 
	 int sum_2 = 0;
	 int j = 1;
	 for (; j < n; ++j) {
	 	sum_2 = sum_2 + j;
	 }
	 
	 return sum_1 + sum_2;
}

从代码中可以看出,m 和 n 是表示两个数据规模。我们无法事先评估 m 和 n 谁的量级大,所以我们在表示复杂度的时候,就不能简单地利用加法法则,省略掉其中一个。所以,上面代码的时间复杂度就是 O(m+n)。

针对这种情况,原来的加法法则就不正确了,我们需要将加法规则改为: T 1 ( m ) + T 2 ( n ) = O ( f ( m ) + g ( n ) ) T1(m) + T2(n) =O(f(m) + g(n)) T1(m)+T2(n)=O(f(m)+g(n))。但是乘法法则继续有效: T 1 ( m ) ∗ T 2 ( n ) = O ( f ( m ) ∗ f ( n ) ) T1(m)*T2(n) = O(f(m) * f(n)) T1(m)T2(n)=O(f(m)f(n))

空间复杂度分析

时间复杂度的全称是渐进时间复杂度,表示算法的执行时间与数据规模之间的增长关系。空间复杂度的全称是渐进空间复杂度,表示算法的存储时间与数据规模之间的增长关系

看个例子:

void print(int n) {
	 int i = 0;
	 int[] a = new int[n];
	 for (i; i <n; ++i) {
		 a[i] = i * i;
	 }
 
	 for (i = n-1; i >= 0; --i) {
		 print out a[i]
	 }
}

跟时间复杂度分析一样,我们可以看到,第 2 行代码中,我们申请了一个空间存储变量 i,但是它是常量阶的,跟数据规模 n 没有关系,所以我们可以忽略。第 3 行申请了一个大小为 n 的 int 类型数组,除此之外,剩下的代码都没有占用更多的空间,所以整段代码的空间复杂度就是 O(n)。

我们常见的空间复杂度就是 O(1)、O(n)、O(n ),像 O(logn)、O(nlogn) 这样的对数阶复杂度平时都用不到。了解上面就可以了

什么是复杂度

复杂度也叫渐进复杂度,包括时间复杂度和空间复杂度,用来分析算法执行效率与数据规模之间的增长关系,可以粗略地表示,越高阶复杂度的算法,执行效率越低。常见的复杂度并不多,从低阶到高阶有:O(1)、O(logn)、O(n)、O(nlogn)、O(n )。

在这里插入图片描述

如何分析一个排序算法

学习排序算法,我们除了要学习它的算法原理、代码实现之外,更重要的是学会如何评价、分析一个排序算法。那分析一个排序算法,要从哪几个方面入手呢?

排序算法的执行效率

对于排序算法执行效率的分析,我们一般会从这几个方面来衡量。

最好情况、最坏情况、平均情况时间复杂度

我们在分析排序算法的时间复杂度时,要分别给出最好情况、最坏情况、平均情况下的时间复杂度。除此之外,还要能说出最好、最坏时间复杂度对应的要排序的原始数据是什么样的。

为什么要区分这三种时间复杂度呢?第一,有些排序算法会区分,为了好对比,所以我们最好都做一下区分。第二,对于要排序的数据,有的接近有序,有的完全无需。有序读不同的数据,对于排序的执行时间肯定是有影响的。我们要知道排序算法在不同数据下的性能表现。

时间复杂度的系数、常数、低阶

我们知道,时间复杂度反映的是数据规模n很大的时候的一个增长趋势,所以它表示的时候会忽略系数、常数、低阶。但是实际的软件开发中,我们排序的可能是10个、100个、1000个这样规模很小的数据。所以,在对同一阶时间复杂度的排序算法性能对比的时候,我们就要把系数、常数、低阶也考虑进来

比较次数和交换(或移动)次数

基于比较的排序算法的执行过程,会涉及到两种操作,一种是元素比较大小,一种是元素交换或者移动。所以,如果我们在分析排序算法的执行效率的时候,应该把比较次数和交换(或移动)次数也考虑进去。

排序算法的内存消耗

算法的内存消耗可以通过空间复杂度来衡量。不过,针对排序算法的空间复杂度,我们还引入了一个新的概念,原地排序。原地排序算法,就是特指空间复杂度是O(1)的排序算法。冒泡、插入、选择都是原地排序算法

排序算法的稳定性

仅仅用执行效率和内存消耗来衡量排序算法的好坏是不够的。针对排序算法,我们还有一个重要的度量指标,稳定性。这个概念是说,如果待排序的序列中存在值相等的元素,经过排序之后,相等元素之间原有的先后顺序不变。

举个例子。比如我们有一组数据 2,9,3,4,8,3,按照大小排序之后就是 2,3,3,4,8,9。

这组数据里有两个 3。经过某种排序算法排序之后,如果两个 3 的前后顺序没有改变,那我们就把这种排序算法叫作稳定的排序算法;如果前后顺序发生变化,那对应的排序算法就叫作不稳定的排序算法

那为什么要考察排序算法的稳定性呢?

  • 很多数据结构和算法课程,在讲排序的时候,都是用整数来举例,但在真正软件开发中,我们要排序的往往不是单纯的整数,而是一组对象,我们需要按照对象的某个key来排序。
  • 比如说,我们现在要给电商交易系统中的“订单”排序。订单有两个属性,一个是下单时间,另一个是订单金额。如果我们现在有 10 万条订单数据,我们希望按照金额从小到大对订单数据排序。对于金额相同的订单,我们希望按照下单时间从早到晚有序。对于这样一个排序需求,我们怎么来做呢?
  • 最先想到的方法是:我们先按照金额对订单数据进行排序,然后,再遍历排序之后的订单数据,对于每个金额相同的小区间再按照下单时间排序。这种排序思路理解起来不难,但是实现起来会很复杂。
  • 借助稳定排序算法,这个问题可以非常简洁地解决。解决思路是这样的:我们先按照下单时间给订单排序,注意是按照下单时间,不是金额。排序完成之后,我们用稳定排序算法,按照订单金额重新排序。两遍排序之后,我们得到的订单数据就是按照金额从小到大排序,金额相同的订单按照下单时间从早到晚排序的。为什么呢?
  • 稳定排序算法可以保持金额相同的两个对象,在排序之后的前后顺序不变。第一次排序之后,所有的订单按照下单时间从早到晚有序了。在第二次排序中,我们用的是稳定的排序算法,所以经过第二次排序之后,相同金额的订单仍然保持下单时间从早到晚有序。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值