算法:最优子结构、无后效性和重复子问题

什么样的问题适合用动态规划来解决呢?

理论

什么样的问题适合用动态规划来解决呢?换句话说,动态规划能解决的问题有什么规律可循呢?可以用“一个模型三个特性”来回答这个问题。

(1)什么是一个模型

  • 它指的是动态规划适合解决的问题的模型,即多阶段决策最优解模型
  • 我们一般是用动态规划来解决最优问题。而仅仅问题的过程,需要经历多个决策阶段。每个决策阶段都对应着一组状态,然后我们寻址一组决策序列,经过这组决策序列,能够产生最终期望求解的最优值

(2)什么是“三个类型”

  • 最优子结构指的是,问题的最优解包含子问题的最优解。反过来说就是,我们可以通过子问题的最优解,推导出问题的最优解。也就是说后面阶段的状态可以通过前面阶段的状态推导出来
  • 无后效性有两层含义。第一层含义是,在推导后面阶段的状态的时候,我们只关心前面阶段的状态值,不关心这个状态是怎么一步一步推导出来的。第二层含义是,某阶段状态一旦确定,就不受之后阶段的决策影响。
  • 重复子问题。用一句话概况一下就是不同的决策序列,到达某个相同阶段时,可能会产生重复的状态

实例

假设我们有一个n乘以n的矩阵 w [ n ] [ n ] w[n][n] w[n][n]。矩阵存储的都是正整数。棋子起始位置在左上角,终止位置在右下角。我们将棋子从左上角移动到右下角。每次只能向右或者向下移动一位。从左上角到右下角,会有很多不同的路径可以左。我们把每条路径经过的数字加起来看作路径的长度。那从左上角移动到右下角的最短路径长度是多少呢?
在这里插入图片描述

我们先来看看,这个问题是否符合“一个模型”

  • 从(0,0)走到(n-1,n-1),总共要走 2 ∗ ( n − 1 ) 2*(n-1) 2(n1)步,也就对应着 2 ∗ ( n − 1 ) 2*(n-1) 2(n1)个阶段。每个阶段都有向右走或者向下走两种决策,并且每个阶段都会对应一个状态集合。
  • 我们把这条定义为min_dist ( i , j ) (i,j) (ij),其中i表示行,j表示列。min_dist表达式的值表示从 ( 0 , 0 ) (0,0) (0,0)到达 ( i , j ) (i,j) (ij)的最短路径长度。所以,这个问题是一个多阶段决策最优解问题,符号动态规划的模型。

在这里插入图片描述
我们再来看,这个问题是否符合“三个特性”

  • 我们可以用回溯算法来解决问题,其对应递归树有重复的节点。重复的节点表示,从左上角到节点对应的位置,有多种路线,这也能说明这个问题中存在重复子问题。

在这里插入图片描述

  • 如果我们走到 ( i , j ) (i, j) (i,j)这个位置,我们只能通过 ( i − 1 , j ) (i-1,j) (i1j) ( i , j − 1 ) (i,j-1) (ij1)这两个位置移动过来,也就是说,我们想要计算 ( i , j ) (i,j) (ij)位置对应的状态,只需要关心 ( i − 1 , j ) (i-1,j) (i1j) ( i , j − 1 ) (i,j-1) (ij1)这两个位置对应的状态,并不关心棋子是通过什么样的路线到达这两个位置的。而且,我们仅仅允许往下和往右移动,不允许后退,所以,前面阶段的状态确定之后,不会被后面阶段的决策所改变,所以,这个问题符合“无后效性”这个特性
  • 刚刚定义状态的时候,我们把从起始位置(0,0)到(i,j)的最小路径,记作min_dist ( i , j ) (i,j) (ij),因为我们只能往右或者向下移动,所以,我们只有可能从 ( i − 1 , j ) (i-1,j) (i1j)或者 ( i , j − 1 ) (i,j-1) (ij1)两个位置到达 ( i , j ) (i,j) (ij)。也就是说,到达 ( i , j ) (i,j) (ij)的最短路径要么经过 ( i − 1 , j ) (i-1,j) (i1j),要么经过 ( i , j − 1 ) (i,j-1) (ij1),而且到达 ( i , j ) (i,j) (ij)的最短路径肯定包含到达这两个位置的最短路径之一。换句话说就是,min_dist ( i , j ) (i,j) (ij)可以通过min_dist ( i , j − 1 ) (i,j-1) (ij1)和min_dist ( i − 1 , j ) (i-1,j) (i1j)两个状态推导出来。这就说明,这个问题符合”最优子结构“

min_dist(i, j) = w[i][j] + min(min_dist(i, j-1), min_dist(i-1, j))

动态规划解题的思路总结

解决动态规划问题,一般有两种思路。分别叫作,状态转移表法和状态转移方程法。

状态转义表法

一般能用动态规划解决的问题,都可以使用回溯算法的暴力搜索解决。

  • 所以,当我们拿到问题的时候,我们可以先用简单的回溯算法解决,然后定义状态,每个状态表示一个节点,然后对应画出递归树。
  • 从递归树中,我们很容易可以看出来,是否存在重复子问题,以及重复子问题是如何产生的。以此来寻找规律,看是否能用动态规划解决。

找到重复子问题之后,接下来,我们有两种处理思路

  • 第一种是**回溯+”备忘录“**的方法,来避免重复子问题。从执行效率来讲,这跟动态规划的解决思路没有差别
  • 第二种是使用动态规划的解决方法,状态转移表法
    • 我们先画出一个状态表。状态表一般是二维的,所以你可以把它想象成二维数组。其中,每天状态包含三个变量,行、列、数组值。我们根据决策的先后过程,从前往后,根据递推关系,分阶段填充状态表中的每个状态。最后,我们将这个递推填表的过程,翻译成代码,就是动态规划代码了
    • 尽管大部分状态表都是二维的,但是如果问题的状态比较复杂,需要很多变量来表示,那对应的状态表就有可能是高维的,比如三维、四维。那这个时候,我们就不适合用状态转移表法来解决了。一方面是因为高维状态转移表不好画图表示,另一方面是因为人脑确实很不擅长思考高维的东西。

现在,我们来看一下,如何套用这个状态转移表法,来解决之前那个矩阵最短路径的问题?

从起点到终点,我们有很多种不同的走法。我们可以穷举所有走法,然后对比找出一个最短走法。不过如何才能无重复又不遗落的穷举出所有走法呢?我们可以用回溯算法这个比较有规律的穷举算法。

回溯算法的代码实现如下所示:

    private int minDist = Integer.MAX_VALUE;
    // 调用方法:minDistBacktracing(0, 0, 0, w, n);
    public void minDistBT(int i, int j, int dist, int[][] w, int n){
        if(i == n && j == n){
            if(dist < minDist){
                minDist = dist;
            }
            return;
        }

        // 往下走,更新i = i + 1, j = j
        if(i < n){
            minDistBT(i + 1, j, dist + w[i][j], w, n);
        }

        // 往右走,更新i = i,j = j + 1
        if(j < n){
            minDistBT(i, j + 1, dist + w[i][j], w, n);
        }
    }

有了回溯代码之后,其对应递归树如下。在递归树中,一个状态(也就是一个节点)包含三个状态(i,j,dist),其中i,j分别表示行和列,dist表示从起点到达(i,j)的路径长度。从图中可以看出,尽管(i,j,dist)不存在重复的,但是(i,j)重复的有很多。对于(i,j)重复的节点,我们只需要选择dist最小的节点,继续递归求解,其他节点就可以舍弃了。
在这里插入图片描述
既然存在重复子问题,我们就可以尝试看下,是否可以用动态规划来解决呢?

我们画出一个二维状态表,表中的行、列表示棋子所在的位置,表中的数值表示从起点到这个位置的最短路径。我们按照决策过程,通过不断状态递推演进,将状态表填好。为了方便代码实现,我们按照行来进行依次填充。

在这里插入图片描述
我们将上面过程翻译成代码,如下:

 	private int minDist = Integer.MAX_VALUE;
    // 调用方法:minDistBacktracing(0, 0, 0, w, n);
    public int minDistBT(int[][] matrix, int n){
        int[][]states = new int[n][n];
        int sum = 0;
        // 初始化states的第一行数据
        for (int i = 0; i < n; i++) {
            sum += matrix[0][i];
            states[0][i] = sum;
        }
        sum = 0;
        //初始化states的第一列数据
        for (int i = 0; i < n; i++) {
            sum += matrix[i][0];
            states[i][0] = sum;
        }

        for (int i = 1; i < n; i++) {
            for (int j = 1; j < n; j++) {
                states[i][j] = matrix[i][j] + Math.min(states[i][j-1], states[i-1][j]);
            }
        }
        
        return states[n-1][n-1];
    }

状态转移方程法

状态转移方程法有点类似递归的解题思路。我们需要分析,某个问题如何通过子问题来递归求解,也就是所谓的最优子结构。根据最优子结构,写出递归公式,也就是所谓的状态转移方程。有了状态转移方程,代码实现就非常简单了。一般情况下,我们有两种代码实现方式,一种是递归+备忘录,一种是迭代递推

比如,上面例子的状态转移方程:min_dist(i, j) = w[i][j] + min(min_dist(i, j-1), min_dist(i-1, j))

状态转移方程是解决动态规划的关键。如果我们能写出状态转移方程,那动态规划问题基本上就解决一大半了。这里用递归+备忘录实现这个状态转移方程

  private int[][] matrix =
            {{1, 3, 5, 9}, {2, 1, 3, 4}, {5, 2, 6, 7}, {6, 8, 4, 3}};
    private int n = 4;
    private int[][] mem = new int[4][4];
    public int minDist(int i, int j){
        if(i == 0 && j == 0){
            return matrix[0][0];
        }
        if(mem[i][j] > 0){
            return  mem[i][j];
        }
        int minLeft = Integer.MAX_VALUE;
        if(j - 1 >= 0){
            minLeft = minDist(i, j - 1);
        }
        int minUp = Integer.MAX_VALUE;
        if(i - 1 >= 0){
            minUp = minDist(i - 1, j);
        }
        
        int currMinDist = matrix[i][j] + Math.min(minLeft, minUp);
        mem[i][j] = currMinDist;
        return currMinDist;
    }

注意,不是每个问题都同时适合这两种解题思路。有的问题可能用第一种思路更清晰,而有的问题可能用第二种思路更清晰,所以,要结合具体的题目来看,到底选择用哪种解题思路。

对比

  • 状态转移表法解题思路大致可以概括为,回溯算法实现 - 定义状态 - 画递归树 - 找重复子问题 - 画状态转移表 - 根据递推关系填表 - 将填表过程翻译成代码。
  • 状态转移方程法的大致思路可以概括为,找最优子结构 - 写状态转移方程 - 将状态转移方程翻译成代码。

四种算法思想比较分析

一般来说,常用有四种算法思想,贪心、分治、回溯和动态规划。其中,贪心、回溯、动态规划可以归为一类,而分治单独作为一类,因为它跟其他三个都不太一样。前三个算法解决问题的模型,都可以抽象成多阶段决策最优解模型,而分治算法解决的问题尽管大部分也是最优解问题,但是,大部分都不能抽象成多阶段决策模型。

回溯算法是个”万金油“,基本上能用动态规划、贪心解决的问题,我们都可以用回溯算法解决。回溯算法相当于穷举搜索。然后对比得到最优解。不过,回溯算法的时间复杂度非常高,是指数级别的,只能用来解决小规模数据的问题。对于大规模数据的问题,用回溯算法解决的执行效率就非常低了。

尽管动态规划比回溯算法高效,但是,并不是所有所有问题,都可以用动态规划来解决。能用动态规划解决的问题,需要满足三个特性,最优子结构、无后效性和重复子问题。在重复子问题这一点上,动态规划和分治算法的区分非常明显。分治算法要求分隔成子问题,不能有重复子问题,而动态规划刚好相反,动态规划之所以高效,就是因为回溯算法实现中存在大量的重复子问题。

贪心算法实际上是动态规划算法的一种特殊情况。它解决问题起来更加高效,代码实现也更加简洁。不过,它可以解决的问题也更加有限,其问题必须满足三个条件:最优子结构、无后效性、贪心选择性。

其中,最优子结构、无后效性跟动态规划中的相同。”贪心选择性“的意思是,通过局部最优的选择,能产生全局最优的选择。每一个阶段,我们都选择当前看起来最优的决策,所有阶段的决策完成之后,最终由这些局部最优解构成全局最优解。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值