题目来源
题目解析
题目解析
这道题目其实是最长递增子序列(Longes Increasing Subsequence,简写为 LIS)的一个变种,因为每次合法的嵌套一定是大的套小的,相当于找一个最长递增子序列,其长度就是最多能嵌套的信封个数。
但是难点在于,标准的LIS算法只能在数组中寻找最长子序列,而信封是由 ( w , h ) (w, h) (w,h)这样的二维数对形式表示的,如何把 L I S LIS LIS算法运用过来呢?
我们可以:先对宽度w进行升序排序,如果遇到w相同时,则按照高度h进行降序排序。之后把所有的h
作为一个数组,在这个数组上计算LIS的长度就是答案
画个图理解一下,先对这些数对进行排序:
然后在 h 上寻找最长递增子序列:
这个子序列就是最优的嵌套方案。
这个解法的关键在于:对于宽度w
相同的数对,要对其高度h
进行降序排序。因为两个宽度相同的信封不能相互包含,逆序排序保证在w相同的数对中最多只选取一个
class Solution {
public:
int maxEnvelopes(vector<vector<int>>& envelopes) {
sort(envelopes.begin(), envelopes.end(), [](const vector<int> &a, const vector<int> &b){
return a[0] == b[0] ? a[1] > b[1]: a[0] < b[0];
});
vector<int> dp; //长度为 i+1 的地方 最小的数字
for(const auto &e: envelopes) {
auto p = lower_bound(dp.begin(), dp.end(), e[1]); //二分查找第一个大于等于的地方
if(p == dp.end()) dp.push_back(e[1]);
else *p = e[1];
}
return dp.size();
}
};
下面代码运行超时:
class Solution {
public:
static bool comp(vector<int> e1, vector<int> e2){
if(e1[0] == e2[0]) return e1[1] > e2[1];
else return e1[0] < e2[0];
}
int maxEnvelopes(vector<vector<int>>& envelopes) {
int n = envelopes.size();
sort(envelopes.begin(), envelopes.end(), comp);
int res = 0;
vector<int> dp(n, 1);
for(int i = 0; i < n; i++){
for(int j = 0; j < i; j++){
if(envelopes[i][1] > envelopes[j][1]){
dp[i] = max(dp[i], dp[j] + 1);
}
}
res = max(res, dp[i]);
}
return res;
}
};