leetcode:354. 俄罗斯套娃信封问题

题目来源

题目解析

在这里插入图片描述

题目解析

这道题目其实是最长递增子序列(Longes Increasing Subsequence,简写为 LIS)的一个变种,因为每次合法的嵌套一定是大的套小的,相当于找一个最长递增子序列,其长度就是最多能嵌套的信封个数。

但是难点在于,标准的LIS算法只能在数组中寻找最长子序列,而信封是由 ( w , h ) (w, h) (w,h)这样的二维数对形式表示的,如何把 L I S LIS LIS算法运用过来呢?

在这里插入图片描述

我们可以:先对宽度w进行升序排序,如果遇到w相同时,则按照高度h进行降序排序。之后把所有的h作为一个数组,在这个数组上计算LIS的长度就是答案

画个图理解一下,先对这些数对进行排序:

在这里插入图片描述
然后在 h 上寻找最长递增子序列:
在这里插入图片描述
这个子序列就是最优的嵌套方案。

这个解法的关键在于:对于宽度w相同的数对,要对其高度h进行降序排序。因为两个宽度相同的信封不能相互包含,逆序排序保证在w相同的数对中最多只选取一个

class Solution {
public:
    int maxEnvelopes(vector<vector<int>>& envelopes) {
        sort(envelopes.begin(), envelopes.end(), [](const vector<int> &a, const vector<int> &b){
            return a[0] == b[0] ? a[1] > b[1]: a[0] < b[0];
        });
        vector<int> dp; //长度为 i+1 的地方 最小的数字
        for(const auto &e: envelopes) {
            auto p = lower_bound(dp.begin(), dp.end(), e[1]);  //二分查找第一个大于等于的地方
            if(p == dp.end()) dp.push_back(e[1]);
            else *p = e[1];
        }
        return dp.size();
    }
};

下面代码运行超时:

class Solution {
public:
    static bool comp(vector<int> e1, vector<int> e2){
        if(e1[0] == e2[0]) return e1[1] > e2[1];
        else return e1[0] < e2[0];
    }

    int maxEnvelopes(vector<vector<int>>& envelopes) {
        int n = envelopes.size();
        sort(envelopes.begin(), envelopes.end(), comp);
        int res = 0;
        vector<int> dp(n, 1);
        for(int i = 0; i < n; i++){
            for(int j = 0; j < i; j++){
                if(envelopes[i][1] > envelopes[j][1]){
                    dp[i] = max(dp[i], dp[j] + 1);
                }
            }
            res = max(res, dp[i]);
        }
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值