算法:完美洗牌问题

题目

有个长度为2n的数组{a1,a2,a3,…,an,b1,b2,b3,…,bn},希望排序后{a1,b1,a2,b2,….,an,bn},请考虑有无时间复杂度o(n),空间复杂度0(1)的解法。

在这里插入图片描述

题目解析

位置置换pefect_shuffle算法

为方便讨论,我们设定数组的下标从1开始,下标范围是[1…2n]。 还是通过之前n=4的例子,来看下每个元素最终去了什么地方。

我们能看到,前n个元素中(n = 4)

  • 第1个元素a1到了原第2个元素a2的位置,即1->2;
  • 第2个元素a2到了原第4个元素a4的位置,即2->4;
  • 第3个元素a3到了原第6个元素b2的位置,即3->6;
  • 第4个元素a4到了原第8个元素b4的位置,即4->8;

那么推广到一般情况即是:前n个元素中,第i个元素去了 第(2 * i)的位置。

上面是针对前n个元素,那么针对后n个元素(n = 4),可以看出:

  • 第5个元素b1到了原第1个元素a1的位置,即5->1;
  • 第6个元素b2到了原第3个元素a3的位置,即6->3;
  • 第7个元素b3到了原第5个元素b1的位置,即7->5;
  • 第8个元素b4到了原第7个元素b3的位置,即8->7;

推广到一般情况是,后n个元素,第i个元素去了第 ( 2 ∗ ( i − n ) ) − 1 = 2 ∗ i − ( 2 ∗ n + 1 ) = ( 2 ∗ i ) (2 * (i - n) ) - 1 = 2 * i - (2 * n + 1) = (2 * i) % (2 * n + 1) (2(in))1=2i(2n+1)=(2i) 个位置。

再综合到任意情况, 任意的第i个元素,我们最终换到了 ( 2 ∗ i ) (2 * i) (2i) % ( 2 ∗ n + 1 ) (2 * n + 1) (2n+1)的位置。为何呢?因为:

  • 当0< i <n时, 原式= (2i) % (2 * n + 1) = 2i;
  • 当i>n时,原式(2 * i) % (2 * n + 1)保持不变。

(2 * n的意思是数组长度,为8)

    // 数组的长度为len,调整前的位置是i,返回调整之后的位置
    // 下标不从0开始,从1开始
    int modifyIndex1(int i, int len){
        if(i <= len / 2){
            return  2 * i;
        }else{
            return 2 * (i - len / 2) - 1;
        }
    }

    // 数组的长度为len,调整前的位置是i,返回调整之后的位置
    // 下标不从0开始,从1开始
    int modifyIndex2(int i, int len){
        return (2 * i) %(len + 1);
    }

因此,如果题目允许我们再用一个数组的话,我们直接把每个元素放到该放得位置就好了。也就产生了最简单的方法pefect_shuffle1,参考代码如下:

// 时间O(n),空间O(n) 数组下标从1开始   
void pefect_shuffle1(int *a,int n) {  
	int n2 = n * 2, i, b[N];  
    for (i = 1; i <= n2; ++i) {  
        b[(i * 2) % (n2 + 1)] = a[i];  
    }  
    for (i = 1; i <= n2; ++i) {  
        a[i] = b[i];  
    }  
}  

但是这里要求我们空间复杂度为O(1),肯定不能用暂存的方法,否则空间复杂度必然到达O(N) 。怎么办呢?

分而治之perfect_shuffle算法

当一个问题规模比较大时,则大而化小,分而治之,就是分治法。

假设n是偶数,我们试着把数组从中间拆分成两半(为了方便描述,只看数组下标就够了):

  • 原始数组的下标:1….2n,即(1 … n/2, n/2+1…n)(n+1 … n+n/2, n+n/2+1 … 2n)
  • 前半段(1 … n/2, n/2+1…n)和后半段(n+1 … n+n/2, n+n/2+1 … 2n)的长度皆为n。

接下来,我们把前半段的后n/2个元素(n/2+1 … n)和后半段的前n/2个元素(n+1…n+n/2)交换,得到

  • 新的前n个元素A:(1…n/2 n+1… n+n/2)
  • 新的后n个元素B:(n/2+1 … n n+n/2+1 … 2n)

换言之,当n是偶数的时候,我们把原问题拆分成了A,B两个子问题,继而原n的求解转换成了n‘ = n/2 的求解。

可当n是奇数的时候呢?我们可以把前半段多出来的那个元素a先拿出来放到末尾,后面所有元素前移,于此,新数列的最后两个元素满足已满足要求,只需考虑前2*(n-1)个元素即可,继而转换成了n-1的问题。

举个例子。

当n是4时

在这里插入图片描述

当n是5时

在这里插入图片描述

实现


完美perfect_shuffle算法

因为之前无论是perfect_shuffle1,还是perfect_shuffle2,这两个算法的均未达到时间复杂度O(N)并且空间复杂度O(1)的要求,所以我们必须得再找一种新的方法,以期能完美的解决本节开头提出的完美洗牌问题。

换个思路,下标连环怼:

  • 前置:在第一个置换洗牌算法中,我们已经知道,每个位置的元素都将变为第(2*i) % (2n+1)个元素
  • 我们思考: a 1 a1 a1从位置1移到位置2时,那么,位置2上的元素 a 2 a2 a2变化到了哪里呢?继续这个过程,我们得到了一个“封闭”的环:
1 -> 2 -> 4 -> 8 -> 7 -> 5 -> 1
  • 沿着这个环,可以把a1、a2、a4、b4、b3、b1这6个元素依次移动到最终位置;
    在这里插入图片描述

  • 此外,该变化的另外一个环是:

3 -> 6 -> 3
  • 沿着这个环,可以把a3、b2这2个元素依次移动到最终位置。

在这里插入图片描述
如果我们知道有几个环,而且能算出每个环的起始位置,然后使用这个沿着圈走的算法就可以洗牌了

//数组下标从1开始,from是圈的头部,mod是要取模的数 mod 应该为 2 * n + 1,时间复杂度O(圈长)  
void cycle_leader(int *a,int from, int mod) {  
	int last = a[from],t,i;  
      
    for (i = from * 2 % mod;i != from; i = i * 2 % mod) {  
        t = a[i];  
        a[i] = last;  
        last = t;  
          
    }  
    a[from] = last;  
}  

事实上,该问题的研究成果已经由Peiyush Jain在10年前公开发表在A Simple In-Place Algorithm for In-Shuffle, Microsoft, 2004中。原始论文直接使用了一个结论

  • 对于 2 ∗ n = ( 3 k − 1 ) 2*n =(3^k-1) 2n=3k1这种长度的数组,恰好只有k个环,且每个环的起始位置分别是 1 , 3 , 9 , … 3 ( k − 1 ) 1,3,9,…3^(k-1) 1,3,93(k1)
  • 对于上面的例子,长度为8,是 3 2 − 1 3^2-1 321,因此,只有2个环。环的起始位置分别是1和3。

至此,完美洗牌算法的“主体工程”已经完工,只存在一个“小”问题:如果数组长度不是( 3 k − 1 3^k-1 3k1)呢?

  • 若2n!=( 3 k − 1 3^k-1 3k1),则总可以找到最大的整数m,使得m< n,并且2m =( 3 k − 1 3^k-1 3k1)。
  • 我们的做法是使用循环左移算法将[m+1……n]之间的元素移动到m+n之后,将[1……m] 和[n+1……n+m]合并成为一个长度为2*m的数组进行环操作,这个2m数组是可以被完整移动的
    在这里插入图片描述
    在这里插入图片描述

算法流程

输入数组 A [ 1..2 ∗ n ] A[1..2 * n] A[1..2n]

  • 找到 2 ∗ m = 3 k − 1 2 * m = 3^k - 1 2m=3k1 使得 3 k < = 2 ∗ n < 3 k + 1 3^k <= 2 * n < 3^{k +1} 3k<=2n<3k+1
  • 把a[m + 1…n + m]那部分循环移m位
  • 对每个 i = 0 , 1 , 2.. k − 1 , 3 i i = 0,1,2..k - 1,3^i i=0,1,2..k13i是个圈的头部,做cycle_leader算法,数组长度为m,所以对 2 ∗ m + 1 2 * m + 1 2m+1取模。
  • 对数组的后面部分 A [ 2 ∗ m + 1..2 ∗ n ] A[2 * m + 1.. 2 * n] A[2m+1..2n]继续使用本算法, 这相当于n减小了m。

以上各个步骤对应的时间复杂度分析如下:

  • 因为循环不断乘3的,所以时间复杂度O(logn)

  • 循环移位O(n)

  • 每个圈,每个元素只走了一次,一共2*m个元素,所以复杂度omega(m), 而m < n,所以 也在O(n)内。

  • T(n - m)

    因此总的时间复杂度为 T(n) = T(n - m) + O(n) ,m = omega(n) ,解得:T(n) = O(n)。

题目

来源

题目

给定一个数组arr,请将数组调整为依次相邻的数字,总是先<=、再>=的关系,并交替下去。比如数组中有五个数字,调整成[a,b,c,d,e],使之满足a<=b>=c<=d>=e。

思路:

  • 按照这个题对空间复杂度O(1)的要求,其实应该先用堆排序对数组进行排序,然后分数组长度为偶数和奇数两种情况分别进行处理:
    • 如果数组长度为偶数,就先对数组进行完美洗牌,然后对洗牌后的数组构建一个长度为2的滚动窗口,每次交换窗口中的两个数就能达成题目的要求;
    • 如果数组长度为奇数,则第一个元素不动,从第二个到最后一个元素进行完美洗牌就可以了。

实现

class ShuffleProblem{
    // 数组的长度为len,调整前的位置是i,返回调整之后的位置
    // 下标不从0开始,从1开始
    int modifyIndex1(int i, int len){
        if(i <= len / 2){
            return  2 * i;
        }else{
            return 2 * (i - len / 2) - 1;
        }
    }

    // 数组的长度为len,调整前的位置是i,返回调整之后的位置
    // 下标不从0开始,从1开始
    int modifyIndex2(int i, int len){
        return (2 * i) %(len + 1);
    }


    // 从start位置开始,往右len的长度这一段,做下标连续推
    // 出发位置依次为1,3,9...
    void cycles(std::vector<int> &arr, int start, int len, int k){
        // 找到每一个出发位置trigger,一共k个
        // 每一个trigger都进行下标连续推
        // 出发位置是从1开始算的,而数组下标是从0开始算的。
        for (int i = 0, trigger = 1; i < k; i++, trigger *= 3) {
            int preValue = arr[trigger + start - 1];
            int cur = modifyIndex2(trigger, len);
            while (cur != trigger) {
                int tmp = arr[cur + start - 1];
                arr[cur + start - 1] = preValue;
                preValue = tmp;
                cur = modifyIndex2(cur, len);
            }
            arr[cur + start - 1] = preValue;
        }
    }

    // [L..R]做逆序调整
    void reverse(std::vector<int> & arr, int L, int R) {
        while (L < R) {
            int tmp = arr[L];
            arr[L++] = arr[R];
            arr[R--] = tmp;
        }
    }

    // [L..M]为左部分,[M+1..R]为右部分,左右两部分互换
    void rotate(std::vector<int> &arr, int L, int M, int R) {
        reverse(arr, L, M);
        reverse(arr, M + 1, R);
        reverse(arr, L, R);
    }

    // 在arr[L..R]上做完美洗牌的调整(arr[L..R]范围上一定要是偶数个数字)
    void shuffle(std::vector<int> &arr, int L, int R){
        while (R - L + 1 > 0) { // 切成一块一块的解决,每一块的长度满足(3^k)-1
            int len = R - L + 1;
            int base = 3;
            int k = 1;
            // 计算小于等于len并且是离len最近的,满足(3^k)-1的数
            // 也就是找到最大的k,满足3^k <= len+1
            while (base <= (len + 1) / 3) { // base > (N+1)/3
                base *= 3;
                k++;
            }
            // 3^k -1
            // 当前要解决长度为base-1的块,一半就是再除2
            int half = (base - 1) / 2;
            // [L..R]的中点位置
            int mid = (L + R) / 2;
            // 要旋转的左部分为[L+half...mid], 右部分为arr[mid+1..mid+half]
            // 注意在这里,arr下标是从0开始的
            rotate(arr, L + half, mid, mid + half);
            // 旋转完成后,从L开始算起,长度为base-1的部分进行下标连续推
            cycles(arr, L, base - 1, k);
            // 解决了前base-1的部分,剩下的部分继续处理
            L = L + base - 1; // L ->     [] [+1...R]
        }
    }

    // 数组必须不为空,且长度为偶数
    void shuffle(std::vector<int> &arr){
        if(!arr.empty() && ((arr.size() & 1) == 0)){
            shuffle(arr, 0, arr.size() - 1);
        }
    }

private:
    bool  isValidWiggle(std::vector<int>& arr) {
        for (int i = 1; i < arr.size(); i++) {
            if ((i & 1) == 1 && arr[i] < arr[i - 1]) {
                return false;
            }
            if ((i & 1) == 0 && arr[i] > arr[i - 1]) {
                return false;
            }
        }
        return true;
    }
public:

    void wiggleSort(std::vector<int> arr) {
        if ( arr.empty() == 0) {
            return;
        }
        // 假设这个排序是额外空间复杂度O(1)的,当然系统提供的排序并不是,你可以自己实现一个堆排序
        std::sort(arr.begin(), arr.end());
        if ((arr.size() & 1) == 1) {
            shuffle(arr, 1, arr.size() - 1);
        } else {
            shuffle(arr, 0, arr.size() - 1);
            for (int i = 0; i < arr.size(); i += 2) {
                int tmp = arr[i];
                arr[i] = arr[i + 1];
                arr[i + 1] = tmp;
            }
        }
    }
};

扩展

在这里插入图片描述

参考

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值