自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

那年聪聪

力求用最简单的语言阐释最深奥的原理!

原创 目标检测:YOLO V3(视频讲解)

与其看文章,不如先看一下这个讲解很清晰的视频:https://www.bilibili.com/video/av77348259?p=2

2020-03-22 17:45:34 101 0

原创 Python:读取txt的文件夹名称,并复制整个文件夹

1.从txt中读取每一行的文件夹名称 2.找到图像路径、xml路径下该文件夹,并直接复制整个文件夹到新的文件夹中 #导入shutil模块和os模块 import shutil,os imgPath = "D:\\HeadModel\\img" xmlPath = &quo...

2020-03-21 10:18:20 79 0

原创 Python:批量把文件复制到另一个文件夹

先看代码: import os #os是用来切换路径和创建文件夹的。 from shutil import copy #shutil 是用来复制黏贴文件的 file_path = r'F:\old'#想拆分的文件夹所在路径,也就是一大堆文件所在的路径 save_...

2020-03-21 10:15:00 163 0

转载 python:txt文件常用读写操作

文件打开的2种方式: f = open("data.txt","r") #设置文件对象 f.close() #关闭文件 #为了方便,避免忘记close掉这个文件对象,可以用下面这种方式替代 with open('data.txt...

2020-03-21 09:18:29 43 0

转载 Python:对文件批量重命名

下面是一大堆混乱的图片,现在要将他们进行改名: 实现代码: #coding=gbk import os import sys def rename(): path=input("请输入路径(例如D:\\\\picture):") #"D:\\pic...

2020-03-20 17:35:28 45 0

原创 目标检测——存在的问题

1、anchor box会带来一些问题,比如模型的输出变得非常稠密,因为对应特征图中每个anchor box,都要输出一个4元组的位置预测和对应这个位置的物体分类的预测分数(C类),这样就会生成(C+4)×H×W×6个输出。考虑在多个特征图上进行检测,模型的输出会进一步增加。另外,anchor b...

2020-03-15 15:28:59 258 0

原创 目标检测——优化策略

1、对于基于anchor的检测器,由于大步幅导致的低召回率可以通过降低 positive anchor boxes 所需的IOU分数来缓解,即修改训练时的参数overlap; 2、

2020-03-15 14:38:43 38 0

转载 Linux修改权限——chmod

一、chmod命令概况 chmod是Linux/Unix中修改文件或者目录权限的命令,通过修改权限可以让指定的人对文件可读、可写、可运行,极大地保证了数据的安全性。 二、chmod命令的语法 命令名称: chmod 执行权限: 所有用户 功能描述: 改变文件或目录权限 语法: ...

2020-03-15 11:41:52 49 0

原创 Linux常用命令

1、查看当前目录:pwd 2、查看当前文件夹下所有文件:ls 查看当前文件夹下所有文件的属性:ls -l 3、改变linux中,对只有Read-only filesystem的文件,如何改为为可写、可读权限? I、可以执行 mount -o remount rw /文件夹名 (一般为...

2020-03-15 11:23:03 33 0

转载 Linux查看文件或文件夹大小: du命令

https://www.cnblogs.com/Sungeek/p/11661554.html

2020-03-15 10:55:14 50 0

原创 Caffe入门:ImportError: No module named _caffe

2020-03-15 10:41:22 28 0

原创 Python入门

1、Python 标识符 以下划线开头的标识符是有特殊意义的。以单下划线开头 _foo 的代表不能直接访问的类属性,需通过类提供的接口进行访问,不能用 from xxx import * 而导入。 以双下划线开头的 __foo 代表类的私有成员,以双下划线开头和结尾的 __foo__ 代表 Pyt...

2020-03-15 10:39:35 20 0

原创 不同框架下的默认图片通道顺序

Caffe: NCHW im=cv2.resize(im,(W,H)) NCNN: CHW tensorflow: NHWC OpenCV: NHWC pytorch: NCHW mxnet: NCHW 海思bgr: NCHW 瑞芯微rknn: NHWC scipy.misc: NHW...

2020-02-24 22:19:14 75 0

原创 Caffe入门:使用训练好的模型进行测试

使用Caffe训练得到的caffemodel测试图片: #Caffe 使用训练好的模型进行测试 import numpy as np import caffe import sys import os caffe_root = '/caffe/' model_name ...

2020-02-24 22:14:24 61 0

原创 损失函数:Center Loss

Center Loss是通过将特征和特征中心的距离和softmax loss一同作为损失函数,使得类内距离更小,有点L1,L2正则化的意思。最关键是在训练时要使用2个Loss函数:Softmax Loss+ lamda* Center Loss

2020-02-22 16:17:25 187 0

原创 ncnn:网络模型加速

深度学习算法要在手机上落地,caffe依赖太多,手机上也没有cuda,需要个又快又小的前向网络实现,ncnn就诞生了,它目前支持以下平台:跨平台,主要支持 android,次要支持 ios / linux / windows。

2020-02-19 17:15:12 150 0

原创 轻量级网络:减少参数量的几种方法

各种减少参数量的方法

2020-02-16 21:55:49 460 0

原创 轻量级网络:Bottleneck结构(沙漏型结构)

Bottleneck结构为之后的深度可分离卷积Depthwise Separable Conv打下了坚实的基础。

2020-02-16 21:26:51 629 0

原创 轻量级网络:SqueezeNet(2016)

SqueezeNet可以极大地减少参数的数量,相较AlexNet参数减少50倍以上,但是这个过程增加了更多的“乘—加”运算,在速度上没有明显提升。不过,同样是轻量级网络的MobileNet就实现了参数量和计算量同时减少的功能。

2020-02-16 17:46:02 102 0

原创 轻量级网络:MobileNet和SqueezeNet的比较

MobileNet兼顾了减少参数量和计算量的优点,广泛应用于移动端。

2020-02-16 17:27:16 277 0

原创 用两个3*3代替5*5卷积的优点

虽然3*3的卷积核计算量较大,但是参数数目较5*5少很多,在用3*3卷积核参与卷积运算时计算机的处理速度会快很多。该优化方法在早期的VGG网络中很常见。而且,使用2个3*3替换一个5*5使得网络的深度(层数)增加,非线性表达特征的能力就会增强。

2020-02-16 17:01:18 253 0

原创 SSD的MultiBoxLoss层的multibox_loss_param说明

以下是MultiBoxLoss的multibox_loss_param: multibox_loss_param { loc_loss_type: SMOOTH_L1 conf_loss_type: SOFTMAX loc_weight: 1.0 num_cla...

2020-02-14 16:54:41 74 0

原创 Linux常用命令:查看进程和杀死进程命令

一般kill命令和ps命令结合使用 例:现在想杀死telnet的进程 1.在所有进程中查看telnet命令 ps -ef |grep telnet 2.根据上面命令查到的进程id,如pid 是 xxx kill -9 xxx# 杀死telnet进程 怕不小心删错进程,导致位置错误,,...

2020-02-13 21:09:28 91 0

原创 深度学习:调参技巧

3x3卷积是CNN的主流组件。平时有设计一些解决分类,回归任务的网络,里面的卷积核基本都设置为3x3,VGG16中就用两个3x3的卷积核堆叠能获得5x5卷积核的感受野并且参数比5x5卷积核少,所以是大量推荐使用的。 NNCC:2个3*3的卷积核参数量:2*(3*3)=18,3*5的卷积核参数量:5...

2020-02-13 16:21:04 38 0

原创 Caffe入门:学习率(lr_policy)

非均匀降低策略,指定降低的step间隔,每次降低为原来的一定倍数。

2020-02-13 15:21:45 29 0

原创 Python+OpenCV:读取和显示图片

Python+OpenCV:读取和显示图片

2020-02-11 21:04:31 89 0

原创 Caffe入门:mining_type

mining_type参数详解: // Mining type during training. // NONE : use all negatives. // MAX_NEGATIVE : select negatives based on the score. // HARD_EXAMPL...

2020-02-11 16:13:46 53 0

原创 Python+OpenCV:画矩形框,写文本

#用 OpenCV 标注 bounding box主要用到下面两个工具——cv2.rectangle() 和 cv2.putText()。用法如下: # cv2.rectangle() # 输入参数分别为图像、左上角坐标、右下角坐标、颜色数组、粗细 cv2.rectangle(img, (x,y)...

2020-02-11 11:48:07 126 0

原创 目标检测:Feature Pyramid Networks(FPN)

FPN(Feature Pyramid Network)算法同时利用低层特征高分辨率和高层特征的高语义信息,通过融合这些不同层的特征达到预测的效果。并且预测是在每个融合后的特征层上单独进行的。

2020-02-09 17:45:57 172 0

原创 目标检测:各种网络结构对比

包含FPN等常用的网络结构。

2020-02-09 16:20:24 434 0

原创 损失函数:Focal Loss

Focal Loss解决两个问题:1> 正负样本不平衡; 2>easy和hard examples不平衡问题。

2020-02-08 17:25:20 205 0

转载 目标检测:anchor box

anchor box需要手动设计,涵盖的尺度有限,一般通过对训练集中目标物体边框尺寸的真实值进行聚类得到,这样会造成对一些形变较为严重的物体检测造成困难。

2020-02-07 18:02:52 374 0

原创 目标检测:YOLO(You Only Look Once)

YOLO作为one stage 检测模型的开端,为了解决上述的two stage的典型弊端而生,主要想法就是对于原图进行区域划分,不再进行Region Proposal环节,每个区域就负责回归对应的目标的位置及类别就好,效果也很显著,在GPU机器能够实现45fps,Fast YOLO能够实现155...

2020-02-06 18:18:22 294 0

原创 目标检测:各个检测网络的差异

two-stage:R-CNN、Fast R-CNN、Faster R-CNN将检测结果分为两部分求解:物体类别(分类问题),物体位置即bounding box(回归问题); one-stage:YOLO将物体检测作为一个回归问题进行求解,输入图像经过一次inference,便能得到图像中所有物...

2020-02-06 17:21:34 96 0

原创 目标检测:Faster R-CNN

Faster R-CNN = RPN + Fast R-CNN

2020-02-05 18:17:31 93 0

原创 目标检测:Fast R-CNN

Fast R-CNN = R-CNN + SPP

2020-02-04 21:19:40 82 0

原创 目标检测:R-CNN

R-CNN:Region-CNN,是第一个成功将深度学习应用到目标检测上的算法。R-CNN基于卷积神经网络(CNN),线性回归,和支持向量机(SVM)等算法,实现目标检测技术。

2020-02-04 21:11:25 203 0

原创 目标检测中的图像缩放

目标检测中使用“直接缩放到目标尺寸”的缩放方式精度最高。

2020-02-04 15:12:04 274 0

转载 非极大值抑制(NMS)

非极大值抑制(NMS)就是抑制不是极大值的元素,搜索局部的极大值。

2020-02-04 14:59:02 118 0

原创 迁移学习

迁移学习:把一个任务训练好的参数,拿到另外一个任务,作为神经网络的初始参数值,这样相比于你直接采用随机初始化的方法,精度可以有很大的提高。

2020-02-04 14:51:20 13 0

提示
确定要删除当前文章?
取消 删除