算法:合法的卷子数量

题目描述

多多打算将N道试题按一定顺序排列,组成一场考试,每道题有一定的难度Ai,一场合理考试的题目难度应该是从低到高的,多多希望难度升序,但又不完全升序,相部的题目中前一道题比后一道题难一点点也是可以的。

在对于一个题目序列,只要相邻的题目中前一道题的难度不超过后一道题的难度+M,就认为是满足的序列。求有多个序列是满足的序列。

输入描述:

第一行输入为两个整数N,M,含义如题目描述所示。

第二行为N个整数,分别表示每道题的难度。

题目解析

题意

  • 前 <= 后 + M
  • 所有题目排序,难度从小到大
  • 0~N-1上的卷子都用完,有多少合法的卷子

思路

先排序:

  • 先将数组从小到大排序。为什么要排序呢?这样新出现的数就没有办法让不合法的卷子重新变合法了

在这里插入图片描述

  • 假设从0到i之前有a套合法的卷子,新来了一个数x,看之前a套合法的卷子有了x的加入能整体增值多少套,不用关心之前不合法的卷子

问题是:怎么增值呢?

  • x加到每一套合法的最后,前面的难度小,一定合法
  • x往前插,要插到什么难度的前面呢?
    • 因为:pre <= next + M
    • x作为当前,往后面看,假设后一个位置是i,那么必须满足 x <= i + M,也就是说,i必须满足i >= X - M。

在这里插入图片描述

二分法

class Solution {
    // arr[0..r]上返回>=t的数有几个, 二分的方法
    // 找到 >=t 最左的位置a, 然后返回r - a + 1就是个数
    int getCount(std::vector<int> &arr, int r, int t){
        int  L = 0, R = r, M = 0;
        int ans = R + 1;
        while (L <= R){
            M = (L + R) / 2;
            if(arr[M] >= t){
                ans = M;
                R = M - 1;
            }else{
                L = M + 1;
            }
        }
        return R - ans + 1;
    }
public:

    // N道试题
    // arr表示每道题的难度
    // arr[i] <= arr[j] + M
    // 求有多个序列是满足的序列。
    int ways(std::vector<int> arr, int M){
        int N = arr.size();
        if(N == 0){
            return 0;
        }
        std::sort(arr.begin(), arr.end());
        int all = 1;
        for (int i = 1; i < N; ++i) {
            all = all * (getCount(arr, i - 1, arr[i] - M) + 1);
        }
        
        return all;
    }
};

查之前>=某个数有多少个可以用树状数组优化


暴力递归

class Solution {
    //pre上一次选择的卷子的难度索引
    //idx当前正在做的决定
    int process(std::vector<int> arr, int m, int index){
        int N = arr.size();
        if(index == m){
            for (int i = 1; i < index; i++) {
                if (arr[i - 1] > arr[i] + m) {
                    return 0;
                }
            }
            return 1;
        }

        int ans = 0;
        for (int i = index; i < N; ++i) {
            swap(arr[index], arr[i]);
            ans += process(arr, index + 1, m);
            swap(arr[index], arr[i]);
        }
        return ans;
    }


public:

    // N道试题
    // arr表示每道题的难度
    // arr[i] <= arr[j] + M
    // 求有多个序列是满足的序列。
    int ways(std::vector<int> arr, int M){
        int N = arr.size();
        if(N == 0){
            return 0;
        }

        return process(arr, 0, M);
    }
};

类似题目

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值