题目来源
题目描述
1、 房间由XY的方格组成,例如下图为64的大小。每一个方格以坐标(x,y)描述。 2、 机器人固定从方格(0,0)出发,只能向东或者向北前进。出口固定为房间的最东北角,如下图的方格(5,3)。用例保证机器人可以从入口走到出口。 3、 房间有些方格是墙壁,如(4,1),机器人不能经过那儿。 4、 有些地方是一旦到达就无法走到出口的,如标记为B的方格,称之为陷阱方格。 5、 有些地方是机器人无法到达的的,如标记为A的方格,称之为不可达方格,不可达方格不包括墙壁所在的位置。 6、 如下示例图中,陷阱方格有2个,不可达方格有3个。 7、 请为该机器人实现路径规划功能:给定房间大小、墙壁位置,请计算出陷阱方格与不可达方格分别有多少个。
题目解析
思路:
- 先生成一个方格,将限制置于1(障碍物)
- 对方格进行搜索(只能从左下角出发)。如果发现不能到达就置于3,如果能够到达就置于2
- 最后统计方格中3(陷阱)的数量和0(不可达)
生成方格是要注意转换
#include <iostream>
#include <utility>
#include <vector>
#include <random>
#include <iterator>
#include <map>
#include <algorithm>
#include <set>
#include <bitset>
#include <queue>
#include <iostream>
using namespace std;
class Solution{
bool dfs(std::vector<std::vector<int>> &arr, int i, int j){
if(i < 0 || j == arr[0].size()
|| arr[i][j] == 1){
return false;
}
if((i == 0 && j == arr[0].size() - 1)){
arr[i][j] = 2;
return true;
}
// 因为我们要找所有的,所以我需要枚举出所有的路, 不能只走一边
bool p1 = dfs(arr, i - 1, j);
bool p2 = dfs(arr, i, j + 1);
if( p1 || p2){
arr[i][j] = 2;
return true;
}else{
arr[i][j] = 3;
return false;
}
}
public:
void walkRoom(std::vector<std::vector<int>> &arr){
dfs(arr, arr.size() - 1, 0);
int trip = 0, unarrived = 0;
for (int i = 0; i < arr.size(); ++i) {
for (int j = 0; j < arr[0].size() ; ++j) {
if(arr[i][j] == 0){
unarrived++;
}else if(arr[i][j] == 3){
trip++;
}
}
}
std::cout << trip << "," << unarrived << "\t";
}
};
int main(){
int N = 4, M = 6;
std::vector<std::vector<int>> arr(N, std::vector<int>(M, 0));
arr[N - 1 - 2 ][0] = arr[N - 1 - 2 ][1] = arr[N - 1 - 2 ][2]
= arr[N - 1 - 1][4] = arr[N - 1 - 1][5] = 1;
for (int i = 0; i < arr.size(); ++i) {
for (int j = 0; j < arr[0].size() ; ++j) {
std::cout << arr[i][j] << "\t";
}
std::cout << "\n";
}
std::cout << "\n";
std::cout << "\n";
Solution a;
a.walkRoom(arr);
return 0;
}