随机森林

随机森林是一种结合多个决策树的机器学习模型,通过特征选择随机和数据采样实现防止过拟合。它使用CART树,以Gini系数或信息增益作为分裂标准。在调参时,主要关注n_estimators(树的数量)和max_features(考虑的特征子集大小)。随机森林的优势包括并行训练、避免过拟合,但缺乏严格的数学理论支持。
摘要由CSDN通过智能技术生成

解释下随机森林?

  • 随机森林=bagging+决策树
  • 随机:特征选择随机+数据采样随机
    • 特征随机是在决策树每个结点上选择的时候随机,并不是在每棵树创建的时候随机
    • 每个结点上对特征选择都是从全量特征中进行采样对,不会剔除已利用的
    • 数据采样,是有放回的采样
      • 1个样本未被选到的概率为p = (1 - 1/N)^N = 1/e,即为OOB
  • 森林:多决策树组合
    • 可分类可回归,回归是对输出值进行简单平均,分类是对输出值进行简单投票

随机森林用的是什么树?

CART树

随机森林的生成过程?

  • 生成单棵决策树
    • 随机选取样本
    • 从M个输入特征里随机选择m个输入特征,然后从这m个输入特征里选择一个最好的进行分裂
    • 不需要剪枝,直到该节点的所有训练样例都属于同一类
  • 生成若干个决策树

解释下随机森林节点的分裂策略?

Gini系数

在连续值和离散值上:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值